Showing 1 - 5 of 5
A new class of robust regression estimators is proposed that forms an alternative to traditional robust one-step estimators and that achieves the √n rate of convergence irrespective of the initial estimator under a wide range of distributional assumptions. The proposed reweighted least trimmed...
Persistent link: https://www.econbiz.de/10011091783
Classical parametric estimation methods applied to nonlinear regression and limited-dependent-variable models are very sensitive to misspecification and data errors. This sensitivity is addressed by the theory of robust statistics which builds upon parametric specification, but provides...
Persistent link: https://www.econbiz.de/10005086676
The least squares estimator is probably the most frequently used estimation method in regression analysis. Unfortunately, it is also quite sensitive to data contamination and model misspecification. Although there are several robust estimators designed for parametric regression models that can...
Persistent link: https://www.econbiz.de/10005738164
Classical parametric estimation methods applied to nonlinear regression and limited-dependent-variable models are very sensitive to misspecification and data errors. This sensitivity is addressed by the theory of robust statistics which builds upon parametric specification, but provides...
Persistent link: https://www.econbiz.de/10005556311
The least squares estimator is probably the most frequently used estimation method in regression analysis. Unfortunately, it is also quite sensitive to data contamination and model misspecification. Although there are several robust estimators designed for parametric regression models that can...
Persistent link: https://www.econbiz.de/10005119143