Showing 1 - 10 of 11
With a view to likelihood inference for discretely observed diffusion type models, we propose a simple method of simulating approximations to diffusion bridges. The method is applicable to all one-dimensional diffusion processes and has the advantage that simple simulation methods like the Euler...
Persistent link: https://www.econbiz.de/10008462029
The Pearson diffusions is a flexible class of diffusions defined by having linear drift and quadratic squared diffusion coefficient. It is demonstrated that for this class explicit statistical inference is feasible. Explicit optimal martingale estimating func- tions are found, and the...
Persistent link: https://www.econbiz.de/10005440039
We propose a method for obtaining maximum likelihood estimates of parameters in diffusion models when the data is a discrete time sample of the integral of the process, while no direct observations of the process itself are available. The data are, moreover, assumed to be contaminated by...
Persistent link: https://www.econbiz.de/10008462021
We consider the nonstationary fractional model $\Delta^{d}X_{t}=\varepsilon _{t}$ with $\varepsilon_{t}$ i.i.d.$(0,\sigma^{2})$ and $d1/2$. We derive an analytical expression for the main term of the asymptotic bias of the maximum likelihood estimator of $d$ conditional on initial values, and we...
Persistent link: https://www.econbiz.de/10010851220
This paper proves consistency and asymptotic normality for the conditional-sum-of-squares estimator, which is equivalent to the conditional maximum likelihood estimator, in multivariate fractional time series models. The model is parametric and quite general, and, in particular, encompasses the...
Persistent link: https://www.econbiz.de/10010935035
An overview of results for the cointegrated VAR model for nonstationary I(1) variables is given. The emphasis is on the analysis of the model and the tools for asymptotic inference. These include: formulation of criteria on the parameters, for the process to be nonstationary and I(1),...
Persistent link: https://www.econbiz.de/10010940882
We consider model based inference in a fractionally cointegrated (or cofractional) vector autoregressive model based on the conditional Gaussian likelihood. The model allows the process X_{t} to be fractional of order d and cofractional of order d-b; that is, there exist vectors ß for which...
Persistent link: https://www.econbiz.de/10008550313
This paper contains an overview of some recent results on the statistical analysis of cofractional processes, see Johansen and Nielsen (2010). We first give an brief summary of the analysis of cointegration in the vector autoregressive model and then show how this can be extended to fractional...
Persistent link: https://www.econbiz.de/10008836608
There are simple well-known conditions for the validity of regression and correlation as statistical tools. We analyse by examples the effect of nonstationarity on inference using these methods and compare them to model based inference. Finally we analyse some data on annual mean temperature and...
Persistent link: https://www.econbiz.de/10008680680
This paper discusses model based inference in an autoregressive model for fractional processes based on the Gaussian likelihood. We consider the likelihood and its derivatives as stochastic processes in the parameters, and prove that they converge in distribution when the errors are i.i.d. with...
Persistent link: https://www.econbiz.de/10005114110