Showing 1 - 10 of 38
In recent years, numerous volatility-based derivative products have been engineered. This has led to interest in constructing conditional predictive densities and confidence intervals for integrated volatility. In this paper, we propose nonparametric kernel estimators of the aforementioned...
Persistent link: https://www.econbiz.de/10010266344
The main objective of this paper is to propose a feasible, model free estimator of the predictive density of integrated volatility. In this sense, we extend recent papers by Andersen, Bollerslev, Diebold and Labys (2003), and by Andersen, Bollerslev and Meddahi (2004, 2005), who address the...
Persistent link: https://www.econbiz.de/10010266347
This paper develops a method to improve the estimation of jump variation using high frequency data with the existence of market microstructure noises. Accurate estimation of jump variation is in high demand, as it is an important component of volatility in finance for portfolio allocation,...
Persistent link: https://www.econbiz.de/10011755339
In recent years, numerous volatility-based derivative products have been engineered. This has led to interest in constructing conditional predictive densities and confidence intervals for integrated volatility. In this paper, we propose nonparametric kernel estimators of the aforementioned...
Persistent link: https://www.econbiz.de/10010282869
The main objective of this paper is to propose a feasible, model free estimator of the predictive density of integrated volatility. In this sense, we extend recent papers by Andersen, Bollerslev, Diebold and Labys (2003), and by Andersen, Bollerslev and Meddahi (2004, 2005), who address the...
Persistent link: https://www.econbiz.de/10005750189
In recent years, numerous volatility-based derivative products have been engineered. This has led to interest in constructing conditional predictive densities and confidence intervals for integrated volatility. In this paper, we propose nonparametric kernel estimators of the aforementioned...
Persistent link: https://www.econbiz.de/10005839048
We study nonparametric estimation of the volatility function of a diffusion process from discrete data, when the data are blurred by additional noise. This noise can be white or correlated, and serves as a model for microstructure effects in financial modeling, when the data are given on an...
Persistent link: https://www.econbiz.de/10008531918
In recent years, numerous volatility-based derivative products have been engineered. This has led to interest in constructing conditional predictive densities and confidence intervals for integrated volatility. In this paper, we propose nonparametric kernel estimators of the aforementioned...
Persistent link: https://www.econbiz.de/10009372753
In recent years, numerous volatility-based derivative products have been engineered. This has led to interest in constructing conditional predictive den- sities and con¯dence intervals for integrated volatility. In this paper, we propose nonparametric estimators of the aforementioned...
Persistent link: https://www.econbiz.de/10009372759
This paper develops a method to improve the estimation of jump variation using high frequency data with the existence of market microstructure noises. Accurate estimation of jump variation is in high demand, as it is an important component of volatility in finance for portfolio allocation,...
Persistent link: https://www.econbiz.de/10011568279