Showing 1 - 2 of 2
We explore one method for finding the convex hull of certain mixed integer sets. The approach is to break up the original set into a small number of subsets, find a compact polyhedral description of the convex hull of each subset, and then take the convex hull of the union of these polyhedra....
Persistent link: https://www.econbiz.de/10005043064
We consider here the mixing set with flows: s + xt = bt, xt = yt for 1 = t = n; s [belongs] R+exp.1+, ˙ [belongs] R+exp.n, y [belongs] Z+exp.n. It models the "flow version" of the basic mixing set introduced and studied by Gunluk and Pochet, as well as the most simple stochastic lot-sizing...
Persistent link: https://www.econbiz.de/10005008668