Showing 1 - 10 of 11
Covariance matrix estimation and principal component analysis (PCA) are two cornerstones of multivariate analysis. Classic textbook solutions perform poorly when the dimension of the data is of a magnitude similar to the sample size, or even larger. In such settings, there is a common remedy for...
Persistent link: https://www.econbiz.de/10010316930
Markowitz (1952) portfolio selection requires estimates of (i) the vector of expected returns and (ii) the covariance matrix of returns. Many proposals to address the first question exist already. This paper addresses the second question. We promote a new nonlinear shrinkage estimator of the...
Persistent link: https://www.econbiz.de/10011282472
Markowitz (1952) portfolio selection requires an estimator of the covariance matrix of returns. To address this problem, we promote a nonlinear shrinkage estimator that is more flexible than previous linear shrinkage estimators and has just the right number of free parameters (that is, the...
Persistent link: https://www.econbiz.de/10011663163
This paper introduces a nonlinear shrinkage estimator of the covariance matrix that does not require recovering the population eigenvalues first. We estimate the sample spectral density and its Hilbert transform directly by smoothing the sample eigenvalues with a variable-bandwidth kernel....
Persistent link: https://www.econbiz.de/10011784298
Markowitz (1952) portfolio selection requires estimates of (i) the vector of expected returns and (ii) the covariance matrix of returns. Many successful proposals to address the first estimation problem exist by now. This paper addresses the second estimation problem. We promote a nonlinear...
Persistent link: https://www.econbiz.de/10011099190
Covariance matrix estimation and principal component analysis (PCA) are two cornerstones of multivariate analysis. Classic textbook solutions perform poorly when the dimension of the data is of a magnitude similar to the sample size, or even larger. In such settings, there is a common remedy for...
Persistent link: https://www.econbiz.de/10010817245
Many statistical applications require an estimate of a covariance matrix and/or its inverse. When the matrix dimension is large compared to the sample size, which happens frequently, the sample covariance matrix is known to perform poorly and may suffer from ill-conditioning. There already...
Persistent link: https://www.econbiz.de/10008679203
Markowitz (1952) portfolio selection requires estimates of (i) the vector of expected returns and (ii) the covariance matrix of returns. Many proposals to address the first question exist already. This paper addresses the second question. We promote a new nonlinear shrinkage estimator of the...
Persistent link: https://www.econbiz.de/10010243453
Covariance matrix estimation and principal component analysis (PCA) are two cornerstones of multivariate analysis. Classic textbook solutions perform poorly when the dimension of the data is of a magnitude similar to the sample size, or even larger. In such settings, there is a common remedy for...
Persistent link: https://www.econbiz.de/10009747823
Markowitz (1952) portfolio selection requires an estimator of the covariance matrix of returns. To address this problem, we promote a nonlinear shrinkage estimator that is more flexible than previous linear shrinkage estimators and has just the right number of free parameters (that is, the...
Persistent link: https://www.econbiz.de/10011598583