Showing 1 - 9 of 9
This paper proposes a new Bayesian approach for estimating, nonparametrically, parameters in econometric models that are characterized as the solution of a linear inverse problem. By using a Gaussian process prior distribution we propose the posterior mean as an estimator and prove consistency,...
Persistent link: https://www.econbiz.de/10011160752
This paper proposes a new Bayesian approach for estimating, nonparametrically, parameters in econometric models that are characterized as the solution of a linear inverse problem. By using a Gaussian process prior distribution we propose the posterior mean as an estimator and prove consistency,...
Persistent link: https://www.econbiz.de/10011158976
This paper proposes a new Bayesian approach for estimating, nonparametrically, functional parameters in econometric models that are characterized as the solution of a linear inverse problem. By using a Gaussian process prior distribution we propose the posterior mean as an estimator and prove...
Persistent link: https://www.econbiz.de/10010899494
The nonparametric estimation of a regression function x from conditional moment restrictions involving instrumental variables is considered. The rate of convergence of penalized estimators is studied in the case where x is not identified from the conditional moment restriction. We also study the...
Persistent link: https://www.econbiz.de/10005065283
This paper proposes a new Bayesian approach for estimating, nonparametrically, functional parameters in econometric models that are characterized as the solution of a linear inverse problem. By using a Gaussian process prior distribution we propose the posterior mean as an estimator and prove...
Persistent link: https://www.econbiz.de/10010699932
Inverse problems can be described as functional equations where the value of the function is known or easily estimable but the argument is unknown. Many problems in econometrics can be stated in the form of inverse problems where the argument itself is a function. For example, consider a...
Persistent link: https://www.econbiz.de/10014024938
The paper introduces a new nonparametric estimator of the spectral density that is given in smoothing the periodogram by the probability density of Beta random variable (Beta kernel). The estimator is proved to be bounded for short memory data, and diverges at the origin for long memory data....
Persistent link: https://www.econbiz.de/10008643952
To make a prediction of a response variable from an explanatory one which takes into account features such as multimodality, a nonparametric approach based on an estimate of the conditional density is advocated and considered. In particular, we build point and interval predictors based on the...
Persistent link: https://www.econbiz.de/10008465400
The estimation of conditional probability distribution functions (PDFs) in a kernel nonparametric framework has recently received attention. As emphasized by Hall, Racine & Li (2004), these conditional PDFs are extremely useful for a range of tasks including modelling and predicting consumer...
Persistent link: https://www.econbiz.de/10008465401