Showing 1 - 7 of 7
The paper introduces a new nonparametric estimator of the spectral density that is given in smoothing the periodogram by the probability density of Beta random variable (Beta kernel). The estimator is proved to be bounded for short memory data, and diverges at the origin for long memory data....
Persistent link: https://www.econbiz.de/10008492572
The paper introduces a new nonparametric estimator of the spectral density that is given in smoothing the periodogram by the probability density of Beta random variable (Beta kernel). The estimator is proved to be bounded for short memory data, and diverges at the origin for long memory data....
Persistent link: https://www.econbiz.de/10009002084
The paper introduces a new nonparametric estimator of the spectral density that is given in smoothing the periodogram by the probability density of Beta random variable (Beta kernel). The estimator is proved to be bounded for short memory data, and diverges at the origin for long memory data....
Persistent link: https://www.econbiz.de/10008643952
The nonparametric estimation of a regression function x from conditional moment restrictions involving instrumental variables is considered. The rate of convergence of penalized estimators is studied in the case where x is not identified from the conditional moment restriction. We also study the...
Persistent link: https://www.econbiz.de/10005065283
We consider the nonparametric regression model with an additive error that is correlated with the explanatory variables. We suppose the existence of instrumental variables that are considered in this model for the identification and the estimation of the regression function. The nonparametric...
Persistent link: https://www.econbiz.de/10008836152
Abstract Copulas are widely used for modeling the dependence structure of multivariate data. Many methods for estimating the copula density functions are investigated. In this paper, we study the asymptotic properties of the Bernstein estimator for unbounded copula density functions. We show...
Persistent link: https://www.econbiz.de/10014622243
Copulas are extensively used for dependence modeling. In many cases the data does not reveal how the dependence can be modeled using a particular parametric copula. Nonparametric copulas do not share this problem since they are entirely data based. This paper proposes nonparametric estimation of...
Persistent link: https://www.econbiz.de/10005043150