Showing 1 - 10 of 34
A new nonparametric estimate of a convex regression function is proposed and its stochastic properties are studied. The method starts with an unconstrained estimate of the derivative of the regression function, which is firstly isotonized and then integrated. We prove asymptotic normality of the...
Persistent link: https://www.econbiz.de/10010296683
A new test for strict monotonicity of the regression function is proposed which is based on a composition of an estimate of the inverse of the regression function with a common regression estimate. This composition is equal to the identity if and only if the ?true? regression function is...
Persistent link: https://www.econbiz.de/10010296764
A new test for strict monotonicity of the regression function is proposed which is based on a composition of an estimate of the inverse of the regression function with a common regression estimate. This composition is equal to the identity if and only if the ?true? regression function is...
Persistent link: https://www.econbiz.de/10009216926
A new nonparametric estimate of a convex regression function is proposed and its stochastic properties are studied. The method starts with an unconstrained estimate of the derivative of the regression function, which is firstly isotonized and then integrated. We prove asymptotic normality of the...
Persistent link: https://www.econbiz.de/10009219821
A central limit theorem for the weighted integrated squared error of kernel type estimators of the first two derivatives of a nonparametric regression function is proved by using results for martingale differences and U-statistics. The results focus on the setting of the Nadaraya-Watson...
Persistent link: https://www.econbiz.de/10010296768
A central limit theorem for the weighted integrated squared error of kernel type estimators of the first two derivatives of a nonparametric regression function is proved by using results for martingale differences and U-statistics. The results focus on the setting of the Nadaraya-Watson...
Persistent link: https://www.econbiz.de/10009216934
In a recent paper Gonzalez Manteiga and Vilar Fernandez (1995) considered the problem of testing linearity of a regression under MA structure of the errors using a weighted L1-distance between a parametric and a nonparametric fit. They established asymptotic normality of the corresponding test...
Persistent link: https://www.econbiz.de/10010316646
In this paper we investigate several tests for the hypothesis of a parametric form of the error distribution in the common linear and nonparametric regression model, which are based on empirical processes of residuals. It is well known that tests in this context are not asymptotically...
Persistent link: https://www.econbiz.de/10010296621
A monotone estimate of the conditional variance function in a heteroscedastic, nonpara- metric regression model is proposed. The method is based on the application of a kernel density estimate to an unconstrained estimate of the variance function and yields an esti- mate of the inverse variance...
Persistent link: https://www.econbiz.de/10010296626
In this note we consider several goodness-of-fit tests for model specification in non- parametric regression models which are based on kernel methods. In order to circumvent the problem of choosing a bandwidth for the corresponding test statistic we propose to consider the statistics as...
Persistent link: https://www.econbiz.de/10010296632