Showing 1 - 10 of 315
Persistent link: https://www.econbiz.de/10010266927
Persistent link: https://www.econbiz.de/10005146754
Persistent link: https://www.econbiz.de/10005616375
In this paper data-driven algorithms for fitting SEMIFAR models (Beran, 1999) are proposed. The algorithms combine the data-driven estimation of the nonparamet- ric trend and maximum likelihood estimation of the parameters. Convergence and asymptotic properties of the proposed algorithms are...
Persistent link: https://www.econbiz.de/10005146733
In this paper data-driven algorithms for fitting SEMIFAR models (Beran, 1999) are proposed. The algorithms combine the data-driven estimation of the nonparamet- ric trend and maximum likelihood estimation of the parameters. Convergence and asymptotic properties of the proposed algorithms are...
Persistent link: https://www.econbiz.de/10010324077
In this paper data-driven algorithms for fitting SEMIFAR models (Beran, 1999) are proposed. The algorithms combine the data-driven estimation of the nonparametric trend and maximum likelihood estimation of the parameters. For selecting the bandwidth, the proposal of Beran and Feng (1999) based...
Persistent link: https://www.econbiz.de/10011543365
In this paper data-driven algorithms for fitting SEMIFAR models (Beran, 1999) are proposed. The algorithms combine the data-driven estimation of the nonparametric trend and maximum likelihood estimation of the parameters. Convergence and asymptotic properties of the proposed algorithms are...
Persistent link: https://www.econbiz.de/10011544511
Persistent link: https://www.econbiz.de/10009374192
On normal days, the temperature decreases with altitude, allowing air pollutants to rise and disperse. During inversion episodes, a warmer air layer at higher altitude traps pollutants close to the ground. We show how readily available NASA satellite data on vertical temperature profiles can be...
Persistent link: https://www.econbiz.de/10010239268
In this paper we consider nonparametric estimation of a structural equation model under full additivity constraint. We propose estimators for both the conditional mean and gradient which are consistent, asymptotically normal, oracle efficient and free from the curse of dimensionality. Monte...
Persistent link: https://www.econbiz.de/10010350365