Showing 1 - 10 of 20
In the common nonparametric regression model the problem of testing for a specific parametric form of the variance function is considered. Recently Dette and Hetzler (2008) proposed a test statistic, which is based on an empirical process of pseudo residuals. The process converges weakly to a...
Persistent link: https://www.econbiz.de/10009216327
In the common nonparametric regression model we consider the problem of constructing optimal designs, if the unknown curve is estimated by a smoothing spline. A new basis for the space of natural splines is derived, and the local minimax property for these splines is used to derive two...
Persistent link: https://www.econbiz.de/10009216844
In this paper a new test for the parametric form of the variance function in the common nonparametric regression model is proposed which is applicable under very weak smoothness assumptions. The new test is based on an empirical process formed from pseudo residuals, for which weak convergence to...
Persistent link: https://www.econbiz.de/10009216863
To estimate the effective dose level ED a in the common binary response model, several parametric and nonparametric estimators have been proposed in the literature. In the present paper, we focus on nonparametric methods and present a detailed numerical comparison of four different approaches to...
Persistent link: https://www.econbiz.de/10009216871
A monotone estimate of the conditional variance function in a heteroscedastic, nonpara- metric regression model is proposed. The method is based on the application of a kernel density estimate to an unconstrained estimate of the variance function and yields an esti- mate of the inverse variance...
Persistent link: https://www.econbiz.de/10009216878
The purpose of this paper is to propose a procedure for testing the equality of several regression curves fi in nonparametric regression models when the noise is inhomogeneous. This extends work of Dette and Neumeyer (2001) and it is shown that the new test is asymptotically uniformly more...
Persistent link: https://www.econbiz.de/10009216882
The computation of robust regression estimates often relies on minimization of a convex functional on a convex set. In this paper we discuss a general technique for a large class of convex functionals to compute the minimizers iteratively which is closely related to majorization-minimization...
Persistent link: https://www.econbiz.de/10009216893
In this paper a new test for the parametric form of the variance function in the common nonparametric regression model is proposed which is applicable under very weak assumptions. The new test is based on an empirical process formed from pseudo residuals, for which weak convergence to a Gaussian...
Persistent link: https://www.econbiz.de/10009216922
A new test for strict monotonicity of the regression function is proposed which is based on a composition of an estimate of the inverse of the regression function with a common regression estimate. This composition is equal to the identity if and only if the ?true? regression function is...
Persistent link: https://www.econbiz.de/10009216926
A central limit theorem for the weighted integrated squared error of kernel type estimators of the first two derivatives of a nonparametric regression function is proved by using results for martingale differences and U-statistics. The results focus on the setting of the Nadaraya-Watson...
Persistent link: https://www.econbiz.de/10009216934