Showing 1 - 7 of 7
We propose a new estimator, the thresholded scaled Lasso, in high dimensional threshold regressions. First, we establish an upper bound on the <I>ℓ</I><SUB>∞</SUB> estimation error of the scaled Lasso estimator of Lee et al. (2012). This is a non-trivial task as the literature on high-dimensional models has...</sub></i>
Persistent link: https://www.econbiz.de/10010491399
This paper proposes an entropy-based approach for aggregating information from misspecified asset pricing models. The statistical paradigm is shifted away from parameter estimation of an optimally selected model to stochastic optimization based on a risk function of aggregation across models....
Persistent link: https://www.econbiz.de/10012030266
Abstract Estimation of the causal dose–response curve is an old problem in statistics. In a non-parametric model, if the treatment is continuous, the dose–response curve is not a pathwise differentiable parameter, and no -consistent estimator is available. However, the risk of a candidate...
Persistent link: https://www.econbiz.de/10014610786
We propose a new estimator, the thresholded scaled Lasso, in high dimensional threshold regressions. First, we establish an upper bound on the sup-norm estimation error of the scaled Lasso estimator of Lee et al. (2012). This is a non-trivial task as the literature on highdimensional models has...
Persistent link: https://www.econbiz.de/10011168920
We propose a new estimator, the thresholded scaled Lasso, in high dimensional threshold regressions. First, we establish an upper bound on the <I>ℓ</I><SUB>∞</SUB> estimation error of the scaled Lasso estimator of Lee et al. (2012). This is a non-trivial task as the literature on high-dimensional models has...</sub></i>
Persistent link: https://www.econbiz.de/10011256756
We propose a new estimator, the thresholded scaled Lasso, in high dimensional threshold regressions. First, we establish an upper bound on the l∞ estimation error of the scaled Lasso estimator of Lee et al. (2012). This is a non-trivial task as the literature on high-dimensional models has...
Persistent link: https://www.econbiz.de/10010477099
This paper proposes an entropy-based approach for aggregating information from misspecified asset pricing models. The statistical paradigm is shifted away from parameter estimation of an optimally selected model to stochastic optimization based on a risk function of aggregation across models....
Persistent link: https://www.econbiz.de/10011771622