Showing 1 - 10 of 13
The cluster robust variance estimator (CRVE) relies on the number of clusters being large. A shorthand "rule of 42'' has emerged, but we show that unbalanced clusters invalidate it. Monte Carlo evidence suggests that rejection frequencies are higher for datasets with 50 clusters proportional to...
Persistent link: https://www.econbiz.de/10011185158
Many empirical projects are well suited to incorporating a linear difference-in-differences research design. While estimation is straightforward, reliable inference can be a challenge. Past research has not only demonstrated that estimated standard errors are biased dramatically downwards in...
Persistent link: https://www.econbiz.de/10009782111
The cluster robust variance estimator (CRVE) relies on the number of clusters being large. The precise meaning of 'large' is ambiguous, but a shorthand 'rule of 42' has emerged in the literature. We show that this rule depends crucially on the assumption of equal-sized clusters. Monte Carlo...
Persistent link: https://www.econbiz.de/10010368290
Many empirical projects are well suited to incorporating a linear difference-in-differences research design. While estimation is straightforward, reliable inference can be a challenge. Past research has not only demonstrated that estimated standard errors are biased dramatically downwards in...
Persistent link: https://www.econbiz.de/10010368299
Inference for estimates of treatment effects with clustered data requires great care when treatment is assigned at the group level. This is true for both pure treatment models and difference-in-differences regressions. Even when the number of clusters is quite large, cluster-robust standard...
Persistent link: https://www.econbiz.de/10011939438
Inference using difference-in-differences with clustered data requires care. Previous research has shown that t tests based on a cluster-robust variance estimator (CRVE) severely over-reject when there are few treated clusters, that different variants of the wild cluster bootstrap can...
Persistent link: https://www.econbiz.de/10011583198
Inference using difference-in-differences with clustered data requires care. Previous research has shown that t tests based on a cluster-robust variance estimator (CRVE) severely over-reject when there are few treated clusters, that different variants of the wild cluster bootstrap can...
Persistent link: https://www.econbiz.de/10011428007
Persistent link: https://www.econbiz.de/10011689759
Inference for estimates of treatment effects with clustered data requires great care when treatment is assigned at the group level. This is true for both pure treatment models and difference-in-differences regressions. Even when the number of clusters is quite large, cluster-robust standard...
Persistent link: https://www.econbiz.de/10011722291
When there are few treated clusters in a pure treatment or difference-in-differences setting, t tests based on a cluster-robust variance estimator (CRVE) can severely over-reject. Although procedures based on the wild cluster bootstrap often work well when the number of treated clusters is not...
Persistent link: https://www.econbiz.de/10011809450