Showing 1 - 10 of 42
We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances where the number of controls may be much larger than the...
Persistent link: https://www.econbiz.de/10009747934
We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances where the number of controls may be much larger than the...
Persistent link: https://www.econbiz.de/10010827524
We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances where the number of controls may be much larger than the...
Persistent link: https://www.econbiz.de/10010288296
We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances where the number of controls may be much larger than the...
Persistent link: https://www.econbiz.de/10009548244
We consider estimation and inference in panel data models with additive unobserved individual specific heterogeneity in a high dimensional setting. The setting allows the number of time varying regressors to be larger than the sample size. To make informative estimation and inference feasible,...
Persistent link: https://www.econbiz.de/10011445705
We consider estimation and inference in panel data models with additive unobserved individual specific heterogeneity in a high dimensional setting. The setting allows the number of time varying regressors to be larger than the sample size. To make informative estimation and inference feasible,...
Persistent link: https://www.econbiz.de/10010459263
We consider the identification of and inference on a partially linear model, when the outcome of interest and some of the covariates are observed in two different datasets that cannot be linked. This type of data combination problem arises very frequently in empirical microeconomics. Using...
Persistent link: https://www.econbiz.de/10013351769
This paper discusses pairing double/debiased machine learning (DDML) with stacking, a model averaging method for combining multiple candidate learners, to estimate structural parameters. We introduce two new stacking approaches for DDML: short-stacking exploits the cross-fitting step of DDML to...
Persistent link: https://www.econbiz.de/10014469867
Previous work on hedonic price functions tends to have focused on one of a number of specification and estimation issues; namely, market segmentation, choice of functional form, multicollinearity or spatial autocorrelation. The purpose of this paper is to bring together these various strands to...
Persistent link: https://www.econbiz.de/10010319038
Semiparametric models play important roles in the field of biological statistics. In this dissertation, two types of semiparametic models are to be studied. One is the partially linear model, where the parametric part is a linear function. We are to investigate the two common estimation methods...
Persistent link: https://www.econbiz.de/10009465181