Showing 1 - 3 of 3
Confidence sets based on sparse estimators are shown to be large compared to more standard confidence sets, demonstrating that sparsity of an estimator comes at a substantial price in terms of the quality of the estimator. The results are set in a general parametric or semiparametric framework.
Persistent link: https://www.econbiz.de/10005014743
The finite-sample coverage properties of confidence intervals based on penalized maximum likelihood estimators like the LASSO, adaptive LASSO, and hard-thresholding are analyzed. It is shown that symmetric intervals are the shortest. The length of the shortest intervals based on the...
Persistent link: https://www.econbiz.de/10005026624
We study the distribution of hard-, soft-, and adaptive soft-thresholding estimators within a linear regression model where the number of parameters k can depend on sample size n and may diverge with n. In addition to the case of known error-variance, we define and study versions of the...
Persistent link: https://www.econbiz.de/10009148008