Showing 1 - 10 of 14
Persistent link: https://www.econbiz.de/10011348907
Classical parametric estimation methods applied to nonlinear regression and limited-dependent-variable models are very sensitive to misspecification and data errors. On the other hand, semiparametric and nonparametric methods, which are not restricted by parametric assumptions, require more data...
Persistent link: https://www.econbiz.de/10010310330
Most dimension reduction methods based on nonparametric smoothing are highly sensitive to outliers and to data coming from heavy tailed distributions. We show that the recently proposed MAVE and OPG methods by Xia et al. (2002) allow us to make them robust in a relatively straightforward way...
Persistent link: https://www.econbiz.de/10010296438
Classical parametric estimation methods applied to nonlinear regression and limited-dependent-variable models are very sensitive to misspecification and data errors. On the other hand, semiparametric and nonparametric methods, which are not restricted by parametric assumptions, require more data...
Persistent link: https://www.econbiz.de/10010983572
Most dimension reduction methods based on nonparametric smoothing are highly sensitive to outliers and to data coming from heavy tailed distributions. We show that the recently proposed MAVE and OPG methods by Xia et al. (2002) allow us to make them robust in a relatively straightforward way...
Persistent link: https://www.econbiz.de/10010983843
The panel-data regression models are frequently applied to micro-level data, which often suffer from data contamination, erroneous observations, or unobserved heterogeneity. Despite the adverse effects of outliers on classical estimation methods, there are only a few robust estimation methods...
Persistent link: https://www.econbiz.de/10011090448
High breakdown-point regression estimators protect against large errors and data contamination. We adapt and generalize the concept of trimming used by many of these robust estimators so that it can be employed in the context of the generalized method of moments. The proposed generalized method...
Persistent link: https://www.econbiz.de/10011090502
High breakdown-point regression estimators protect against large errors and data con- tamination. We generalize the concept of trimming used by many of these robust estima- tors, such as the least trimmed squares and maximum trimmed likelihood, and propose a general trimmed estimator, which...
Persistent link: https://www.econbiz.de/10011090581
The binary-choice regression models such as probit and logit are used to describe the effect of explanatory variables on a binary response vari- able. Typically estimated by the maximum likelihood method, estimates are very sensitive to deviations from a model, such as heteroscedastic- ity and...
Persistent link: https://www.econbiz.de/10011092154
High breakdown-point regression estimators protect against large errors and data con- tamination. Motivated by some { the least trimmed squares and maximum trimmed like- lihood estimators { we propose a general trimmed estimator, which unifies and extends many existing robust procedures. We...
Persistent link: https://www.econbiz.de/10011092408