Showing 1 - 10 of 15
In this paper we study the properties of the analytic central path of asemidefinite programming problem under perturbation of a set of inputparameters. Specifically, we analyze the behavior of solutions on the centralpath with respect to changes on the right hand side of the...
Persistent link: https://www.econbiz.de/10011284099
In this paper we study the properties of the analytic central path of asemidefinite programming problem under perturbation of a set of inputparameters. Specifically, we analyze the behavior of solutions on the centralpath with respect to changes on the right hand side of the...
Persistent link: https://www.econbiz.de/10010324706
In this paper, we develop various calculus rules for general smooth matrix-valued functions and for the class of matrix convex (or concave) functions first introduced by Loewner and Kraus in 1930s. Then we use these calculus rules and the matrix convex function -log X to study a new notion of...
Persistent link: https://www.econbiz.de/10004969823
How to initialize an algorithm to solve an optimization problem is of great theoretical and practical importance. In the simplex method for linear programming this issue is resolved by either the two-phase approach or using the so-called big M technique. In the interior point method, there is a...
Persistent link: https://www.econbiz.de/10008484081
This paper establishes the superlinear convergence of a symmetric primal-dual path following algorithm for semidefinite programming under the assumptions that the semidefinite program has a strictly complementary primal-dual optimal solution and that the size of the central path neighborhood...
Persistent link: https://www.econbiz.de/10008484087
This paper considers the problem of minimizing a linear function over the intersection of an affine space with a closed convex cone. In the first half of the paper, we give a detailed study of duality properties of this problem and present examples to illustrate these properties. In particular,...
Persistent link: https://www.econbiz.de/10008484094
This paper presents a unified study of duality properties for the problem of minimizing a linear function over the intersection of an affine space with a convex cone in finite dimension. Existing duality results are carefully surveyed and some new duality properties are established. Examples are...
Persistent link: https://www.econbiz.de/10008484096
In this paper we study the properties of the analytic central path of a semidefinite programming problem under perturbation of a set of input parameters. Specifically, we analyze the behavior of solutions on the central path with respect to changes on the right hand side of the constraints,...
Persistent link: https://www.econbiz.de/10005281871
We study stochastic linear--quadratic (LQ) optimal control problems over an infinite horizon, allowing the cost matrices to be indefinite. We develop a systematic approach based on semidefinite programming (SDP). A central issue is the stability of the feedback control; and we show this can be...
Persistent link: https://www.econbiz.de/10008570636
In this paper a symmetric primal-dual transformation for positive semidefinite programming is proposed. For standard SDP problems, after this symmetric transformation the primal variables and the dual slacks become identical. In the context of linear programming, existence of such a primal-dual...
Persistent link: https://www.econbiz.de/10008584634