Showing 1 - 4 of 4
A Kalman filter for application to stationary or non-stationary time series is proposed. A major feature is a new initialisation method to accommodate non-stationary time series. The filter works on time series with missing values at any point of time including the initialisation phase. It can...
Persistent link: https://www.econbiz.de/10004966126
A Kalman filter for application to stationary or non-stationary time series is proposed. A major feature is a new initialisation method to accommodate non-stationary time series. The filter works on time series with missing values at any point of time including the initialisation phase. It can...
Persistent link: https://www.econbiz.de/10005246258
Damped trend exponential smoothing has previously been established as an important forecasting method. Here, it is shown to have close links to simple exponential smoothing with a smoothed error tracking signal. A special case of damped trend exponential smoothing emerges from our analysis, one...
Persistent link: https://www.econbiz.de/10005581148
In the exponential smoothing approach to forecasting, restrictions are often imposed on the smoothing parameters which ensure that certain components are exponentially weighted averages. In this paper, a new general restriction is derived on the basis that the one-step ahead prediction error can...
Persistent link: https://www.econbiz.de/10005149124