Showing 1 - 10 of 101
Persistent link: https://www.econbiz.de/10010352003
Persistent link: https://www.econbiz.de/10011686739
Persistent link: https://www.econbiz.de/10011634897
Persistent link: https://www.econbiz.de/10012294576
This paper considers the problem of numerically evaluating American option prices when the dynamics of the underlying are driven by both stochastic volatility following the square root process of Heston (1993), and by a Poisson jump process of the type originally introduced by Merton (1976). We...
Persistent link: https://www.econbiz.de/10004987159
This paper considers the problem of numerically evaluating American option prices when the dynamics of the underlying are driven by both stochastic volatility following the square root process of Heston [18], and by a Poisson jump process of the type originally introduced by Merton [25]. We...
Persistent link: https://www.econbiz.de/10005006747
This paper considers the problem of pricing American options when the dynamics of the underlying are driven by both stochastic volatility following a square root process as used by Heston (1993), and by a Poisson jump process as introduced by Merton (1976). Probability arguments are invoked to...
Persistent link: https://www.econbiz.de/10008492104
This paper provides an extension of McKean’s (1965) incomplete Fourier transform method to solve the two-factor partial differential equation for the price and early exercise surface of an American call option, in the case where the volatility of the underlying evolves randomly. The...
Persistent link: https://www.econbiz.de/10005132682
We present an integral equation approach for the valuation of American-style derivatives when the underlying asset price follows a general diffusion process and the interest rate is stochastic. Our contribution is fourfold. First, we show that the exercise region is determined by a single...
Persistent link: https://www.econbiz.de/10009198171