Showing 1 - 10 of 22
In this paper we replace the Gaussian errors in the standard Gaussian, linear state space model with stochastic volatility processes. This is called a GSSF-SV model. We show that conventional MCMC algorithms for this type of model are ineffective, but that this problem can be removed by...
Persistent link: https://www.econbiz.de/10011334849
In this paper, we introduce a new approach for volatility modeling in discrete and continuous time. We follow the stochastic volatility literature by assuming that the variance is a function of a state variable. However, instead of assuming that the loading function is ad hoc (e.g., exponential...
Persistent link: https://www.econbiz.de/10005545733
In this paper, we introduce a new approach for volatility modeling in discrete and continuous time. We follow the stochastic volatility literature by assuming that the variance is a function of a state variable. However, instead of assuming that the loading function is ad hoc (e.g., exponential...
Persistent link: https://www.econbiz.de/10005100570
In this paper, we consider temporal aggregation of volatility models. We introduce a semiparametric class of volatility models termed square-root stochastic autoregressive volatility (SR-SARV) and characterized by an autoregressive dynamic of the stochastic variance. Our class encompasses the...
Persistent link: https://www.econbiz.de/10005100823
The GARCH and Stochastic Volatility paradigms are often brought into conflict as two competitive views of the appropriate conditional variance concept : conditional variance given past values of the same series or conditional variance given a larger past information (including possibly...
Persistent link: https://www.econbiz.de/10005353319
In this paper we replace the Gaussian errors in the standard Gaussian, linear state space model with stochastic volatility processes. This is called a GSSF-SV model. We show that conventional MCMC algorithms for this type of model are ineffective, but that this problem can be removed by...
Persistent link: https://www.econbiz.de/10010325429
State space alternative to autoregressive conditional heteroskedasticity models are proposed. The initial model, which is labelled the Gaussian local scale model, has a measurement density which is Gaussian, conditional on the unobservable precision. The precision is assumed to be a gamma...
Persistent link: https://www.econbiz.de/10009441423
This paper is concerned with simulation-based inference in generalized models of stochastic volatility defined by heavy-tailed Student-t distributions (with unknown degrees of freedom) and exogenous variables in the observation and volatility equations and a jump component in the observation...
Persistent link: https://www.econbiz.de/10009441450
This paper derives the exact distribution of the maximum likelihood estimator of a first-order linear autoregression with an exponential disturbance term. We also show that, even if the process is stationary, the estimator is T-consistent, where T is the sample size. In the unit root case, the...
Persistent link: https://www.econbiz.de/10009441481
In this paper we review some recent work on limit results on realised power variation, that is, sums of powers of absolute increments of various semimartingales. A special case of this analysis is realised variance and its probability limit, quadratic variation. Such quantities often appear in...
Persistent link: https://www.econbiz.de/10009441482