Showing 1 - 10 of 28
The Dantzig selector (DS) is a recent approach of estimation in high-dimensional linear regression models with a large number of explanatory variables and a relatively small number of observations. As in the least absolute shrinkage and selection operator (LASSO), this approach sets certain...
Persistent link: https://www.econbiz.de/10010745019
This paper generalizes the results for the Bridge estimator of Huang et al. (2008) to linear random and fixed effects panel data models which are allowed to grow in both dimensions. In particular, we show that the Bridge estimator is oracle efficient. It can correctly distinguish between...
Persistent link: https://www.econbiz.de/10008525438
This paper is concerned with the problem of variable selection when the marginal effects of signals on the target variable as well as the correlation of the covariates in the active set are allowed to vary over time, without committing to any particular model of parameter instabilities. It poses...
Persistent link: https://www.econbiz.de/10014290133
The use of large datasets for macroeconomic forecasting has received a great deal of interest recently. Boosting is one possible method of using high-dimensional data for this purpose. It is a stage-wise additive modelling procedure, which, in a linear specification, becomes a variable selection...
Persistent link: https://www.econbiz.de/10010292498
This paper documents that factors extracted from a large set of macroeconomic variables bear useful information for predicting monthly US excess stock returns and volatility over the period 1980-2005. Factor-augmented predictive regression models improve upon both benchmark models that only...
Persistent link: https://www.econbiz.de/10010326025
This paper examines which macroeconomic and financial variables are most informative for the federal funds target rate decisions made by the Federal Open Market Committee (FOMC) from a forecasting perspective. The analysis is conducted for the FOMC decision during the period January 1990 - June...
Persistent link: https://www.econbiz.de/10010326185
This study considers Bayesian variable selection in the Phillips curve context by using the Bernoulli approach of Korobilis (2013a). The Bernoulli model, however, is unable to account for model change over time, which is important if the set of relevant predictors changes over time. To tackle...
Persistent link: https://www.econbiz.de/10011722809
This paper is concerned with problem of variable selection and forecasting in the presence of parameter instability. There are a number of approaches proposed for forecasting in the presence of breaks, including the use of rolling windows or exponential down-weighting. However, these studies...
Persistent link: https://www.econbiz.de/10012269545
Factor models feature prominently in the macroeconomic nowcasting literature, yet no clear consensus has emerged regarding the question of how many and which variables to select in such applications. Examples of both large-scale models, estimated with data sets consisting of over 100 time series...
Persistent link: https://www.econbiz.de/10013166086
Forecasts from dynamic factor models potentially benefit from refining the data set by eliminating uninformative series. The paper proposes to use prediction weights as provided by the factor model itself for this purpose. Monte Carlo simulations and an empirical application to short-term...
Persistent link: https://www.econbiz.de/10011605938