Showing 1 - 10 of 25
Confidence intervals based on cluster-robust covariance matrices can be constructed in many ways. In addition to conventional intervals obtained by inverting Wald (t) tests, the paper studies intervals obtained by inverting LM tests, studentized bootstrap intervals based on the wild cluster...
Persistent link: https://www.econbiz.de/10010385823
In many, if not most, econometric applications, it is impossible to estimate consistently the elements of the white-noise process or processes that underlie the DGP. A common example is a regression model with heteroskedastic and/or autocorrelated disturbances,where the heteroskedasticity and...
Persistent link: https://www.econbiz.de/10011774249
Inference based on cluster-robust standard errors is known to fail when the number of clusters is small, and the wild cluster bootstrap fails dramatically when the number of treated clusters is very small. We propose a family of new procedures called the sub- cluster wild bootstrap. In the case...
Persistent link: https://www.econbiz.de/10011528395
We study a cluster-robust variance estimator (CRVE) for regression models with clustering in two dimensions that was proposed in Cameron, Gelback, and Miller (2011). We prove that this CRVE is consistent and yields valid inferences under precisely stated assumptions about moments and cluster...
Persistent link: https://www.econbiz.de/10011722260
We study asymptotic inference based on cluster-robust variance estimators for regression models with clustered errors, focusing on the wild cluster bootstrap and the ordinary wild bootstrap. We state conditions under which both asymptotic and bootstrap tests and confidence intervals will be...
Persistent link: https://www.econbiz.de/10011657377
The wild bootstrap was originally developed for regression models with heteroskedasticity of unknown form. Over the past thirty years, it has been extended to models estimated by instrumental variables and maximum likelihood, and to ones where the error terms are (perhaps multi-way) clustered....
Persistent link: https://www.econbiz.de/10011872385
We study asymptotic inference based on cluster-robust variance estimators for regression models with clustered errors, focusing on the wild cluster bootstrap and the ordinary wild bootstrap. We state conditions under which both asymptotic and bootstrap tests and confidence intervals will be...
Persistent link: https://www.econbiz.de/10011804820
Reliable inference with clustered data has received a great deal of attention in recent years. The overwhelming majority of this research assumes that the cluster structure is known. This assumption is very strong, because there are often several possible ways in which a dataset could be...
Persistent link: https://www.econbiz.de/10012201366
We propose a wild bootstrap procedure for linear regression models estimated by instrumental variables. Like other bootstrap procedures that we have proposed elsewhere, it uses efficient estimates of the reduced-form equation(s). Unlike them, it takes account of possible heteroskedasticity of...
Persistent link: https://www.econbiz.de/10011940749
We propose a wild bootstrap procedure for linear regression models estimated by instrumental variables. Like other bootstrap procedures that we have proposed elsewhere, it uses efficient estimates of the reduced-form equation(s). Unlike them, it takes account of possible heteroskedasticity of...
Persistent link: https://www.econbiz.de/10005688408