Showing 1 - 10 of 39
Efficient computational algorithms for bootstrapping linear regression models with clustered data are discussed. For OLS regression, a new algorithm is provided for the pairs cluster bootstrap, and two algorithms for the wild cluster bootstrap are compared. One of these is a new way to express...
Persistent link: https://www.econbiz.de/10012662210
In many fields of economics, and also in other disciplines, it is hard to justify the assumption that the random error terms in regression models are uncorrelated. It seems more plausible to assume that they are correlated within clusters, such as geographical areas or time periods, but...
Persistent link: https://www.econbiz.de/10012183351
We provide new and computationally attractive methods, based on jackknifing by cluster, to obtain cluster-robust variance matrix estimators (CRVEs) for linear regres- sion models estimated by least squares. These estimators have previously been com- putationally infeasible except for small...
Persistent link: https://www.econbiz.de/10014451087
We study asymptotic inference based on cluster-robust variance estimators for regression models with clustered errors, focusing on the wild cluster bootstrap and the ordinary wild bootstrap. We state conditions under which both asymptotic and bootstrap tests and confidence intervals will be...
Persistent link: https://www.econbiz.de/10011939434
We study a cluster-robust variance estimator (CRVE) for regression models with clustering in two dimensions that was proposed in Cameron, Gelbach, and Miller (2011). We prove that this CRVE is consistent and yields valid inferences under precisely stated assumptions about moments and cluster...
Persistent link: https://www.econbiz.de/10011939437
Inference for estimates of treatment effects with clustered data requires great care when treatment is assigned at the group level. This is true for both pure treatment models and difference-in-differences regressions. Even when the number of clusters is quite large, cluster-robust standard...
Persistent link: https://www.econbiz.de/10011939438
We study asymptotic inference based on cluster-robust variance estimators for regression models with clustered errors, focusing on the wild cluster bootstrap and the ordinary wild bootstrap. We state conditions under which both asymptotic and bootstrap tests and confidence intervals will be...
Persistent link: https://www.econbiz.de/10011939450
When there are few treated clusters in a pure treatment or difference-in-differences setting, t tests based on a cluster-robust variance estimator (CRVE) can severely over-reject. Although procedures based on the wild cluster bootstrap often work well when the number of treated clusters is not...
Persistent link: https://www.econbiz.de/10011939455
The wild bootstrap was originally developed for regression models with heteroskedasticity of unknown form. Over the past thirty years, it has been extended to models estimated by instrumental variables and maximum likelihood, and to ones where the error terms are (perhaps multi-way) clustered....
Persistent link: https://www.econbiz.de/10011939457
Inference using difference-in-differences with clustered data requires care. Previous research has shown that, when there are few treated clusters, t-tests based on cluster-robust variance estimators (CRVEs) severely overreject, and different variants of the wild cluster bootstrap can either...
Persistent link: https://www.econbiz.de/10012431053