Showing 501 - 510 of 1,063
We develop inference tools in a semiparametric regression model with missing response data. A semiparametric regression imputation estimator, a marginal average estimator and a (marginal) propensity score weighted estimator are defined. All the estimators are proved to be asymptotically normal,...
Persistent link: https://www.econbiz.de/10005797496
For linear processes, semiparametric estimation of the memory parameter, based on the log-periodogramand local Whittle estimators, has been exhaustively examined and their properties are well established.However, except for some specific cases, little is known about the estimation of the memory...
Persistent link: https://www.econbiz.de/10005797497
We introduce a kernel-based estimator of the density function and regression function for data that have been grouped into family totals. We allow for a common intra-family component but require that observations from different families be in dependent. We establish consistency and asymptotic...
Persistent link: https://www.econbiz.de/10005797505
We propose a test of the hypothesis of stochastic monotonicity. This hypothesis isof interest in many applications. Our test is based on the supremum of a rescaledU-statistic. We show that its asymptotic distribution is Gumbel. The proof is difficultbecause the approximating Gaussian stochastic...
Persistent link: https://www.econbiz.de/10005797506
We develop in this paper a general econometric methodology referred to as the Simulated Asymptotic Least Squares (SALS). It is shown that this approach provides a unifying theory for 'approximation-based' or simulation-based inference methods and nests the Simulated Nonlinear Least Squares...
Persistent link: https://www.econbiz.de/10005797509
The method of simulated scores (MSS) is presented for estimating limited dependent variables models (LDV) with flexible correlation structure in the unobservables. We propose simulators that are continuous in the unknown parameter vectors, and hence standard optimization methods can be used to...
Persistent link: https://www.econbiz.de/10005797510
This paper derives the asymptotic distribution of nonparametric neural network estimator of the Lyapunov exponent in a noisy system proposed by Nychka et al (1992) and others. Positivity of the Lyapunov exponent is an operational definition of chaos. We introduce a statistical framework for...
Persistent link: https://www.econbiz.de/10005797511
We consider a semiparametric distributed lag model in which the "news impact curve" m isnonparametric but the response is dynamic through some linear filters. A special case ofthis is a nonparametric regression with serially correlated errors. We propose an estimatorof the news impact curve...
Persistent link: https://www.econbiz.de/10005797512
Standard approaches to the estimation of sample selection models are known to be inconsistent under non-normality. In particular, this paper considers the two-step Heckman (1976, 1979) estimator of the interecept of the outcome equation. This estimator is compared with a consistent...
Persistent link: https://www.econbiz.de/10005797513
We propose new procedures for estimating the univariate quantities of interest in both additive and multiplicative nonparametric marker dependent hazard models. We work with a full counting process framework that allows for left truncation and right censoring. Our procedures are based on kernels...
Persistent link: https://www.econbiz.de/10005797514