Showing 1 - 10 of 74,161
We propose an alternate parameterization of stationary regular finite-state Markov chains, and a decomposition of the parameter into time reversible and time irreversible parts. We demonstrate some useful properties of the decomposition, and propose an index for a certain type of time...
Persistent link: https://www.econbiz.de/10005545621
In this paper we consider bayesian semiparametric regression within the generalized linear model framework. Specifically, we study a class of autoregressive time series where the time trend is incorporated in a nonparametrically way. Estimation and inference where performed through Markov Chain...
Persistent link: https://www.econbiz.de/10005407984
Bayesian inference requires an analyst to set priors. Setting the right prior is crucial for precise forecasts. This paper analyzes how optimal prior changes when an economy is hit by a recession. For this task, an autoregressive distributed lag (ADL) model is chosen. The results show that a...
Persistent link: https://www.econbiz.de/10005103392
We consider a nonparametric Bayesian approach to estimate the diffusion coefficient of a stochastic differential equation given discrete time observations over a fixed time interval. As a prior on the diffusion coefficient, we employ a histogram-type prior with piecewise constant realisations on...
Persistent link: https://www.econbiz.de/10014117474
We consider Particle Gibbs (PG) as a tool for Bayesian analysis of non-linear non-Gaussian state-space models. PG is a Monte Carlo (MC) approximation of the standard Gibbs procedure which uses sequential MC (SMC) importance sampling inside the Gibbs procedure to update the latent and potentially...
Persistent link: https://www.econbiz.de/10012970355
In this paper, we propose a Markov Chain Quasi-Monte Carlo (MCQMC) approach for Bayesian estimation of a discrete-time version of the stochastic volatility (SV) model. The Bayesian approach represents a feasible way to estimate SV models. Under the conventional Bayesian estimation method for SV...
Persistent link: https://www.econbiz.de/10013116422
A new version of the local scale model of Shephard (1994) is presented. Its features are identically distributed evolution equation disturbances, the incorporation of in-the-mean effects, and the incorporation of variance regressors. A Bayesian posterior simulator and a new simulation smoother...
Persistent link: https://www.econbiz.de/10013120871
This book presents in detail methodologies for the Bayesian estimation of single-regime and regime-switching GARCH models. These models are widespread and essential tools in financial econometrics and have, until recently, mainly been estimated using the classical Maximum Likelihood technique....
Persistent link: https://www.econbiz.de/10013156202
The rough path-dependent volatility (RPDV) model (Parent 2022) effectively captures key empirical features that are characteristic of volatility dynamics, making it a suitable choice for volatility forecasting. However, its complex structure presents challenges when it comes to estimating the...
Persistent link: https://www.econbiz.de/10014354222
In the aftermath of the Global Financial Crisis, some risk management practitioners have advocated wider adoption of Bayesian inference to replace Value- at-Risk (VaR) models in order to minimize risk failures. Despite its limitations, the Bayesian methodology has significant advantages. Just...
Persistent link: https://www.econbiz.de/10014263882