Showing 1 - 10 of 29
Bootstrapping is a nonparametric approach for evaluating the distribution of a statistic based on random resampling. This article illustrates the bootstrap as an alternative method for estimating the standard errors when the theoretical calculation is complicated or not available in the current...
Persistent link: https://www.econbiz.de/10005568874
Persistent link: https://www.econbiz.de/10006968770
Persistent link: https://www.econbiz.de/10000924343
Fan, Heckman and Wand (1995) proposed locally weighted kernel polynomial regression methods for generalized linear models and quasilikelihood functions. When the covariate variables are missing at random, we propose a weighted estimator based on the inverse selection probability weights....
Persistent link: https://www.econbiz.de/10010310756
In parametric regression problems, estimation of the parameter of interest is typically achieved via the solution of a set of unbiased estimating equations. We are interested in problems where in addition to this parameter, the estimating equations consist of an unknown nuisance function which...
Persistent link: https://www.econbiz.de/10010310762
We use ideas from estimating function theory to derive new, simply computed consistent covariance matrix estimates in nonparametric regression and in a class of semiparametric problems. Unlike other estimates in the literature, ours do not require auxiliary or additional nonparametric regressions.
Persistent link: https://www.econbiz.de/10010310772
We use ideas from estimating function theory to derive new, simply computed consistent covariance matrix estimates in nonparametric regression and in a class of semiparametric problems. Unlike other estimates in the literature, ours do not require auxiliary or additional nonparametric regressions.
Persistent link: https://www.econbiz.de/10010956344
Fan, Heckman and Wand (1995) proposed locally weighted kernel polynomial regression methods for generalized linear models and quasilikelihood functions. When the covariate variables are missing at random, we propose a weighted estimator based on the inverse selection probability weights....
Persistent link: https://www.econbiz.de/10010956555
In parametric regression problems, estimation of the parameter of interest is typically achieved via the solution of a set of unbiased estimating equations. We are interested in problems where in addition to this parameter, the estimating equations consist of an unknown nuisance function which...
Persistent link: https://www.econbiz.de/10010956576
Persistent link: https://www.econbiz.de/10006629300