Showing 1 - 10 of 49
We consider equalities between the ordinary least squares estimator (<InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$\mathrm {OLSE} $$</EquationSource> </InlineEquation>), the best linear unbiased estimator (<InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$\mathrm {BLUE} $$</EquationSource> </InlineEquation>) and the best linear unbiased predictor (<InlineEquation ID="IEq3"> <EquationSource Format="TEX">$$\mathrm {BLUP} $$</EquationSource> </InlineEquation>) in the general linear model <InlineEquation ID="IEq4"> <EquationSource Format="TEX">$$\{ \mathbf y , \mathbf X \varvec{\beta }, \mathbf...</equationsource></inlineequation></equationsource></inlineequation></equationsource></inlineequation></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10010998603
We briefly discuss the so called pseudo-GLS estimator in a standard linear regression model with nonsperical disturbances, and conclude that the potentiality for applications is higher than originally assumed by Fiebig Bartels and Kramer (1996).
Persistent link: https://www.econbiz.de/10005511903
Persistent link: https://www.econbiz.de/10005005451
Persistent link: https://www.econbiz.de/10005104594
Persistent link: https://www.econbiz.de/10005104689
Persistent link: https://www.econbiz.de/10005081818
Persistent link: https://www.econbiz.de/10005610303
Persistent link: https://www.econbiz.de/10005610460
Persistent link: https://www.econbiz.de/10005230984
Persistent link: https://www.econbiz.de/10005231005