Showing 1 - 10 of 123,532
Measuring and modeling financial volatility is the key to derivative pricing, asset allocation and risk management.The recent availability of high-frequency data allows for refined methods in this field.In particular, more precise measures for the daily or lower frequency volatility can be...
Persistent link: https://www.econbiz.de/10003727640
Measuring and modeling financial volatility is the key to derivative pricing, asset allocation and risk management.The recent availability of high-frequency data allows for refined methods in this field.In particular, more precise measures for the daily or lower frequency volatility can be...
Persistent link: https://www.econbiz.de/10010274148
We investigate price duration variance estimators that have long been neglected in the literature. We show i) how price duration estimators can be used for the estimation and forecasting of the integrated variance of an underlying semi-martingale price process and ii) how they are affected by a)...
Persistent link: https://www.econbiz.de/10012855793
We propose an automatic machine-learning system to forecast realized volatility for S&P 100 stocks using 118 features and five machine learning algorithms. A simple average ensemble model combining all learning algorithms delivers extraordinary performance across forecast horizons, and the...
Persistent link: https://www.econbiz.de/10013234262
We propose a novel and easy-to-implement framework for forecasting correlation risks based on a large set of salient realized correlation features and the sparsity-encouraging LASSO technique. Considering the universe of S&P 500 stocks, we find that the new approach manifests in statistically...
Persistent link: https://www.econbiz.de/10014235631
We compare more than 1000 different volatility models in terms of their fit to the historical ISE-100 Index data and their forecasting performance of the conditional variance in an out-of-sample setting. Exponential GARCH model of Nelson (1991) with “constant mean, t-distribution, one lag...
Persistent link: https://www.econbiz.de/10013159436
In this paper, we provide new empirical evidence of the relative usefulness of interval (density) and point forecasts of asset-return volatility, in the context of financial risk management using high frequency data. In our evaluation we use both statistical criteria (i.e., accuracy of...
Persistent link: https://www.econbiz.de/10013314352
We propose a flexible GARCH-type model for the prediction of volatility in financial time series. The approach relies on the idea of using multivariate B-splines of lagged observations and volatilities. Estimation of such a B-spline basis expansion is constructed within the likelihood framework...
Persistent link: https://www.econbiz.de/10014051065
We demonstrate that the parameters controlling skewness and kurtosis in popular equity return models estimated at daily frequency can be obtained almost as precisely as if volatility is observable by simply incorporating the strong information content of realized volatility measures extracted...
Persistent link: https://www.econbiz.de/10013128339
We evaluate the performance of several linear and nonlinear machine learning models in forecasting the realized volatility (RV) of ten global stock market indices in the period from January 2000 to December 2021. We train models using a dataset which includes past values of the RV and additional...
Persistent link: https://www.econbiz.de/10014076641