Showing 11 - 20 of 812
Persistent link: https://www.econbiz.de/10012317779
Persistent link: https://www.econbiz.de/10012304028
Persistent link: https://www.econbiz.de/10012063541
Methods for cluster-robust inference are routinely used in economics and many other disciplines. However, it is only recently that theoretical foundations for the use of these methods in many empirically relevant situations have been developed. In this paper, we use these theoretical results to...
Persistent link: https://www.econbiz.de/10012494221
Persistent link: https://www.econbiz.de/10012499095
We study two cluster-robust variance estimators (CRVEs) for regression models with clustering in two dimensions and give conditions under which t-statistics based on each of them yield asymptotically valid inferences. In particular, one of the CRVEs requires stronger assumptions about the nature...
Persistent link: https://www.econbiz.de/10012183373
We study cluster-robust inference for binary response models. Inference based on the most commonly-used cluster-robust variance matrix estimator (CRVE) can be very unreliable. We study several alternatives. Conceptually the simplest of these, but also the most computationally demanding, involves...
Persistent link: https://www.econbiz.de/10015048740
For linear regression models with cross-section or panel data, it is natural to assume that the disturbances are clustered in two dimensions. However, the finite-sample properties of two-way cluster-robust tests and confidence intervals are often poor. We discuss several ways to improve...
Persistent link: https://www.econbiz.de/10015048741
We provide new and computationally attractive methods, based on jackknifing by cluster, to obtain cluster-robust variance matrix estimators (CRVEs) for linear regres- sion models estimated by least squares. These estimators have previously been com- putationally infeasible except for small...
Persistent link: https://www.econbiz.de/10013172440
Persistent link: https://www.econbiz.de/10013189456