Showing 1 - 10 of 120
Persistent link: https://www.econbiz.de/10002945181
Persistent link: https://www.econbiz.de/10002945197
Persistent link: https://www.econbiz.de/10012262513
We consider an additive model with second order interaction terms. It is shown how the components of this model can be estimated using marginal integration, and the asymptotic distribution of the estimators is derived. Moreover, two test statistics for testing the presence of interactions are...
Persistent link: https://www.econbiz.de/10010309875
We derive an asymptotic theory of nonparametric estimation for an nonlinear transfer function model Z(t) = f (Xt) + Wt where {Xt} and {Zt} are observed nonstationary processes and {Wt} is a stationary process. IN econometrics this can be interpreted as a nonlinear cointegration type...
Persistent link: https://www.econbiz.de/10010310207
This paper discusses nonparametric kernel regression with the regressor being a d-dimensional ß-null recurrent process in presence of conditional heteroscedasticity. We show that the mean function estimator is consistent with convergence rate p n(T)hd, where n(T) is the number of regenerations...
Persistent link: https://www.econbiz.de/10011755281
Persistent link: https://www.econbiz.de/10008911704
We consider the estimation and identification of the functional structures of nonlinear econometric systems of the ARCH type. We employ nonparametric kernel estimates for the nonlinear functions characterizing the systems, and we establish strong consistency along with sharp rates of convergence...
Persistent link: https://www.econbiz.de/10005411726
This paper discusses nonparametric models for panels of time series. There is already a substantial literature on nonlinear models and nonparametric methods in a regression and time series setting. But almost without exception these developments have been limited to univariate and multivariate...
Persistent link: https://www.econbiz.de/10004967761
We propose to approximate the conditional expectation of a spatial random variable given its nearest-neighbour observations by an additive function. The setting is meaningful in practice and requires no unilateral ordering. It is capable of catching nonlinear features in spatial data and...
Persistent link: https://www.econbiz.de/10011126267