Showing 1 - 10 of 122
We develop a novel approach to build checks of parametric regression models when many regressors are present, based on a class of sufficiently rich semiparametric alternatives, namely single-index models. We propose an omnibus test based on the kernel method that performs against a sequence of...
Persistent link: https://www.econbiz.de/10015230004
We develop a novel approach to build checks of parametric regression models when many regressors are present, based on a class of rich enough semiparametric alternatives, namely single-index models. We propose an omnibus test based on the kernel method that performs against a sequence of...
Persistent link: https://www.econbiz.de/10005636350
We propose a new estimation method for models defined by conditional moment restrictions,that minimizes a distance criterion based on kernel smoothing. Whether the bandwidth parameter is fixed or decreases to zero with the sample size, our approach defines a whole class of estimators. We develop...
Persistent link: https://www.econbiz.de/10005636392
We develop a novel approach to build checks of parametric regression models when many regressors are present, based on a class of sufficiently rich semiparametric alternatives, namely single-index models. We propose an omnibus test based on the kernel method that performs against a sequence of...
Persistent link: https://www.econbiz.de/10009401353
We develop a novel approach to building checks of parametric regression models when many regressors are present, based on a class of sufficiently rich semiparametric alternatives, namely single-index models. We propose an omnibus test based on the kernel method that performs against a sequence...
Persistent link: https://www.econbiz.de/10010606676
To study the influence of a bandwidth parameter in inference with conditional moments, we propose a new class of estimators and establish an asymptotic representation of our estimator as a process indexed by a bandwidth, which can vary within a wide range including bandwidths independent of the...
Persistent link: https://www.econbiz.de/10010703138
We study the influence of a bandwidth parameter in inference with conditional estimating equations. In that aim, we propose a new class of smooth minimum distance estimators and we develop a theory that focuses on uniformity in bandwidth. We establish a vn-asymptotic representation of our...
Persistent link: https://www.econbiz.de/10011004746
We address the issue of lack-of-fit testing for a parametric quantile regression. We propose a simple test that involves one-dimensional kernel smoothing, so that the rate at which it detects local alternatives is independent of the number of covariates. The test has asymptotically gaussian...
Persistent link: https://www.econbiz.de/10010812651
We develop a novel approach to building checks of parametric regression models when many regressors are present, based on a class of sufficiently rich semiparametric alternatives, namely single-index models. We propose an omnibus test based on the kernel method that performs against a sequence...
Persistent link: https://www.econbiz.de/10010690837
Persistent link: https://www.econbiz.de/10005285971