Showing 1 - 10 of 24,288
In nonparametric curve estimation, the smoothing parameter is critical for performance. In order to estimate the hazard rate, we compare nearest neighbor selectors that minimize the quadratic, the Kullback-Leibler, and the uniform loss. These measures result in a rule of thumb, a...
Persistent link: https://www.econbiz.de/10010300666
We consider the problem of uniform asymptotics in kernel functional estimation where the bandwidth can depend on the data. In a unified approach we investigate kernel estimates of the density and the hazard rate for uncensored and right-censored observations. The model allows for the fixed...
Persistent link: https://www.econbiz.de/10010296605
We consider the problem of uniform asymptotics in kernel functional estimation where the bandwidth can depend on the data. In a unified approach we investigate kernel estimates of the density and the hazard rate for uncensored and right-censored observations. The model allows for the fixed...
Persistent link: https://www.econbiz.de/10009216946
Several bandwidth selection procedures for kernel density estimation of a random variable that is sampled under random double truncation are introduced and compared. The motivation is based on the fact that this type of incomplete data is often encountered in astronomy and medicine. The...
Persistent link: https://www.econbiz.de/10010617235
Over the last four decades, several methods for selecting the smoothing parameter, generally called the bandwidth, have been introduced in kernel regression. They differ quite a bit, and although there already exist more selection methods than for any other regression smoother we can still see...
Persistent link: https://www.econbiz.de/10010329908
This paper proposes plug-in bandwidth selection for kernel density estimation with discrete data via minimization of mean summed square error. Simulation results show that the plug-in bandwidths perform well, relative to cross-validated bandwidths, in non-uniform designs. We further find that...
Persistent link: https://www.econbiz.de/10011755277
This paper proposes plug-in bandwidth selection for kernel density estimation with discrete data via minimization of mean summed square error. Simulation results show that the plug-in bandwidths perform well, relative to cross-validated bandwidths, in non-uniform designs. We further find that...
Persistent link: https://www.econbiz.de/10011220361
Over the last four decades, several methods for selecting the smoothing parameter, generally called the bandwidth, have been introduced in kernel regression. They differ quite a bit, and although there already exist more selection methods than for any other regression smoother we can still see...
Persistent link: https://www.econbiz.de/10009293342
Over the last four decades, several methods for selecting the smoothing parameter, generally called the bandwidth, have been introduced in kernel regression. They differ quite a bit, and although there already exist more selection methods than for any other regression smoother we can still see...
Persistent link: https://www.econbiz.de/10010349165
In this paper a modified double smoothing bandwidth selector, MDS, based on a new criterion, which combines the plug-in and the double smoothing ideas, is proposed. A self-complete iterative double smoothing rule (_IDS ) is introduced as a pilot method. The asymptotic properties of both_IDS...
Persistent link: https://www.econbiz.de/10011544923