Showing 1 - 10 of 453
Persistent link: https://www.econbiz.de/10002673492
This paper demonstrates that the class of conditionally linear and Gaussian state-space models offers a general and convenient framework for simultaneously handling nonlinearity, structural change and outliers in time series. Many popular nonlinear time series models, including threshold, smooth...
Persistent link: https://www.econbiz.de/10014027875
Persistent link: https://www.econbiz.de/10003920289
Bayesian inference for DSGE models is typically carried out by single block random walk Metropolis, involving very high computing costs. This paper combines two features, adaptive independent Metropolis-Hastings and parallelisation, to achieve large computational gains in DSGE model estimation....
Persistent link: https://www.econbiz.de/10003932659
Persistent link: https://www.econbiz.de/10009708919
Persistent link: https://www.econbiz.de/10009691169
Time series subject to parameter shifts of random magnitude and timing are commonly modeled with a change-point approach using Chib's (1998) algorithm to draw the break dates. We outline some advantages of an alternative approach in which breaks come through mixture distributions in state...
Persistent link: https://www.econbiz.de/10003325461
Persistent link: https://www.econbiz.de/10003425516
Persistent link: https://www.econbiz.de/10003625229
We model a regression density nonparametrically so that at each value of the covariates the density is a mixture of normals with the means, variances and mixture probabilities of the components changing smoothly as a function of the covariates. The model extends existing models in two important...
Persistent link: https://www.econbiz.de/10003543998