Showing 31 - 40 of 86
One of the main research areas in Bayesian Nonparametrics is the proposal and study of priors which generalize the Dirichlet process. Here we exploit theoretical properties of Poisson random measures in order to provide a comprehensive Bayesian analysis of random probabilities which are obtained...
Persistent link: https://www.econbiz.de/10005125173
Persistent link: https://www.econbiz.de/10005238533
In Bayesian nonparametric inference, random discrete probability measures are commonly used as priors within hierarchical mixture models for density estimation and for inference on the clustering of the data. Recently it has been shown that they can also be exploited in species sampling...
Persistent link: https://www.econbiz.de/10009651024
Persistent link: https://www.econbiz.de/10009651030
One of the main research areas in Bayesian Nonparametrics is the proposal and study of priors which generalize the Dirichlet process. Here we exploit theoretical properties of Poisson random measures in order to provide a comprehensive Bayesian analysis of random probabilities which are obtained...
Persistent link: https://www.econbiz.de/10014027995
The present paper provides a review of the results concerning distributional properties of means of random probability measures. Our interest in this topic has originated from inferential problems in Bayesian Nonparametrics. Nonetheless, it is worth noting that these random quantities lay an...
Persistent link: https://www.econbiz.de/10013153000
The present paper provides exact expressions for the probability distribution of linear functionals of the two–parameter Poisson–Dirichlet process. Distributional results that follow from the application of an inversion formula for a (generalized) Cauchy–Stieltjes transform are achieved....
Persistent link: https://www.econbiz.de/10004972506
In this work we propose a Bayesian nonparametric approach for tackling statistical problems related to EST surveys. In particular, we provide estimates for: a) the coverage, defined as the proportion of unique genes in the library represented in the given sample of reads; b) the number of new...
Persistent link: https://www.econbiz.de/10004980480
Discrete random probability measures and the exchangeable random partitions they induce are key tools for addressing a variety of estimation and prediction problems in Bayesian inference. Indeed, many popular nonparametric priors, such as the Dirichlet and the Pitman–Yor process priors, select...
Persistent link: https://www.econbiz.de/10010842840
Most of the Bayesian nonparametric models for non-exchangeable data that are used in applications are based on some extension to the multivariate setting of the Dirichlet process, the best known being MacEachern’s dependent Dirichlet process. A comparison of two recently introduced classes of...
Persistent link: https://www.econbiz.de/10011056550