Showing 51 - 60 of 86
A Bayesian nonparametric methodology has been recently proposed in order to deal with the issue of prediction within species sampling problems. Such problems concern the evaluation, conditional on a sample of size n, of the species variety featured by an additional sample of size m. Genomic...
Persistent link: https://www.econbiz.de/10008518906
Bayesian nonparametric inference is a relatively young area of research and it has recently undergone a strong development. Most of its success can be explained by the considerable degree of flexibility it ensures in statistical modelling, if compared to parametric alternatives, and by the...
Persistent link: https://www.econbiz.de/10008518911
The present paper provides a review of the results concerning distributional properties of means of random probability measures. Our interest in this topic has originated from inferential problems in Bayesian Nonparametrics. Nonetheless, it is worth noting that these random quantities play an...
Persistent link: https://www.econbiz.de/10008518912
The past decade has seen a remarkable development in the area of Bayesian nonparametric inference both from a theoretical and applied perspective. As for the latter, the celebrated Dirichlet process has been successfully exploited within Bayesian mixture models leading to many interesting...
Persistent link: https://www.econbiz.de/10005135386
Recently the class of normalized random measures with independent increments, which contains the Dirichlet process as a particular case, has been introduced. Here a new technique for deriving moments of these random probability measures is proposed. It is shown that, "a priori", most of the...
Persistent link: https://www.econbiz.de/10005285137
One of the main research areas in Bayesian Nonparametrics is the proposal and study of priors which generalize the Dirichlet process. In this paper, we provide a comprehensive Bayesian non-parametric analysis of random probabilities which are obtained by normalizing random measures with...
Persistent link: https://www.econbiz.de/10005285184
The paper deals with the problem of determining the number of components in a mixture model. We take a Bayesian non-parametric approach and adopt a hierarchical model with a suitable non-parametric prior for the latent structure. A commonly used model for such a problem is the mixture of...
Persistent link: https://www.econbiz.de/10005294629
Random probability measures are the main tool for Bayesian nonparametric inference, with their laws acting as prior distributions. Many well–known priors used in practice admit different, though (in distribution) equivalent, representations. Some of these are convenient if one wishes to...
Persistent link: https://www.econbiz.de/10010587723
Species sampling problems have a long history in ecological and biological studies and a number of issues, including the evaluation of species richness, the design of sampling experiments, the estimation of rare species variety, are to be addressed. Such inferential problems have recently...
Persistent link: https://www.econbiz.de/10010587725
Most of the Bayesian nonparametric models for non–exchangeable data that are used in applications are based on some extension to the multivariate setting of the Dirichlet process, the best known being MacEachern’s dependent Dirichlet process. A comparison of two recently introduced classes...
Persistent link: https://www.econbiz.de/10010667872