Showing 481 - 490 of 618
For linear regression models with cross-section or panel data, it is natural to assume that the disturbances are clustered in two dimensions. However, the finite-sample properties of two-way cluster-robust tests and confidence intervals are often poor. We discuss several ways to improve...
Persistent link: https://www.econbiz.de/10015051864
The cluster robust variance estimator (CRVE) relies on the number of clusters being large. The precise meaning of 'large' is ambiguous, but a shorthand 'rule of 42' has emerged in the literature. We show that this rule depends crucially on the assumption of equal-sized clusters. Monte Carlo...
Persistent link: https://www.econbiz.de/10010368290
Confidence intervals based on cluster-robust covariance matrices can be constructed in many ways. In addition to conventional intervals obtained by inverting Wald (t) tests, the paper studies intervals obtained by inverting LM tests, studentized bootstrap intervals based on the wild cluster...
Persistent link: https://www.econbiz.de/10011380809
We study asymptotic inference based on cluster-robust variance estimators for regression models with clustered errors, focusing on the wild cluster bootstrap and the ordinary wild bootstrap. We state conditions under which both asymptotic and bootstrap tests and confidence intervals will be...
Persistent link: https://www.econbiz.de/10011939434
We study a cluster-robust variance estimator (CRVE) for regression models with clustering in two dimensions that was proposed in Cameron, Gelbach, and Miller (2011). We prove that this CRVE is consistent and yields valid inferences under precisely stated assumptions about moments and cluster...
Persistent link: https://www.econbiz.de/10011939437
Inference for estimates of treatment effects with clustered data requires great care when treatment is assigned at the group level. This is true for both pure treatment models and difference-in-differences regressions. Even when the number of clusters is quite large, cluster-robust standard...
Persistent link: https://www.econbiz.de/10011939438
We study asymptotic inference based on cluster-robust variance estimators for regression models with clustered errors, focusing on the wild cluster bootstrap and the ordinary wild bootstrap. We state conditions under which both asymptotic and bootstrap tests and confidence intervals will be...
Persistent link: https://www.econbiz.de/10011939450
When there are few treated clusters in a pure treatment or difference-in-differences setting, t tests based on a cluster-robust variance estimator (CRVE) can severely over-reject. Although procedures based on the wild cluster bootstrap often work well when the number of treated clusters is not...
Persistent link: https://www.econbiz.de/10011939455
The wild bootstrap was originally developed for regression models with heteroskedasticity of unknown form. Over the past thirty years, it has been extended to models estimated by instrumental variables and maximum likelihood, and to ones where the error terms are (perhaps multi-way) clustered....
Persistent link: https://www.econbiz.de/10011939457
This article argues that conventional approaches to the treatment of seasonality in econometric investigation are often inappropriate. A more appropriate technique is to allow all regression coefficients to vary with the season, but to constrain them to do so in a smooth fashion. A Bayesian...
Persistent link: https://www.econbiz.de/10011940418