Showing 21 - 30 of 87
   This paper develops a new efficient scheme for approximations of expectations of the solutions to stochastic differential equations (SDEs). In particular, we present a method for connecting approximate operators based on an asymptotic expansion to compute a target expectation...
Persistent link: https://www.econbiz.de/10010959397
Various international bodies and non-governmental organizations (NGOs) have proposed guidelines for safeguarding biodiversity. Nevertheless, quantitative criteria for safeguarding biodiversity should first be established to measure the attainment of biodiversity conservation if biodiversity is...
Persistent link: https://www.econbiz.de/10011029703
This paper develops a new efficient scheme for approximations of expectations of the solutions to stochastic differential equations (SDEs). In particular, we present a method for connecting approximate operators based on an asymptotic expansion with multidimensional Malliavin weights to compute...
Persistent link: https://www.econbiz.de/10011170100
This paper proposes a new closed-form approximation scheme for the forward-backward stochastic differential equations (FBSDEs). In particular, we obtain an error estimate for the scheme applying an asymptotic expansion in Malliavin calculus for the forward SDEs combined with the Picard iteration...
Persistent link: https://www.econbiz.de/10010578073
This paper proposes a new approximation method for pricing barrier options with discrete monitoring under stochastic volatility environment. In particular, the integration-by-parts formula in Malliavin calculus is effectively applied in an asymptotic expansion approach. First, the paper derives...
Persistent link: https://www.econbiz.de/10008556779
This paper derives asymptotic expansion formulas for option prices and implied volatilities as well as the density of the underlying asset price in a stochastic volatility model. In particular, the integration-by-parts formula in Malliavin calculus and the push-down of Malliavin weights are...
Persistent link: https://www.econbiz.de/10008556780
   This paper proposes a unified method for precise estimates of the error bounds in asymptotic expansions of an option price and its Greeks (sensitivities) under a stochastic volatility model. More generally, we also derive an error estimate for an asymptotic expansion around a...
Persistent link: https://www.econbiz.de/10010752126
This paper proposes a new approximation method for pricing barrier options with discrete monitoring under stochastic volatility environment. In particular, the integration-by-parts formula and the duality formula in Malliavin calculus are effectively applied in an asymptotic expansion approach....
Persistent link: https://www.econbiz.de/10008478846
This paper proposes a new approximation method for pricing barrier options with discrete monitoring under stochastic volatility environment. In particular, the integration-by-parts formula in Malliavin calculus is effectively applied in an asymptotic expansion approach. First, the paper derives...
Persistent link: https://www.econbiz.de/10008519536
This paper proposes a new approximation method for pricing barrier options with discrete monitoring under stochastic volatility environment. In particular, the integration-by-parts formula and the duality formula in Malliavin calculus are effectively applied in pricing barrier options with...
Persistent link: https://www.econbiz.de/10008519553