Showing 11 - 20 of 59
We give a broad overview of approximation methods to derive analytical formulas for accurate and quick evaluation of option prices. We compare different approaches, from the theoretical point of view regarding the tools they require, and also from the numerical point of view regarding their...
Persistent link: https://www.econbiz.de/10010898714
For general time-dependent local volatility models, we propose new approximation formulas for the price of call options. This extends previous results of [BGM10b] where stochastic expansions combined with Malliavin calculus were performed to obtain approximation formulas based on the local...
Persistent link: https://www.econbiz.de/10010898787
In the context of an asset paying affine-type discrete dividends, we present closed analytical approximations for the pricing of European vanilla options in the Black-Scholes model with time-dependent parameters. They are obtained using a stochastic Taylor expansion around a shifted lognormal...
Persistent link: https://www.econbiz.de/10010899076
We study the problem of estimating the coefficients of a diffusion (Xl, t 2:: 0); the estimation is based on discrete data Xn . . n = 0, 1, ... ,N. The sampling frequency delta t is constant , and asymptotics arc taken at the number of observations tends to infinity. We prove that the problem of...
Persistent link: https://www.econbiz.de/10010983786
In the context of an asset paying affine-type discrete dividends, we present closed analytical approximations for the pricing of European vanilla options in the Black--Scholes model with time-dependent parameters. They are obtained using a stochastic Taylor expansion around a shifted lognormal...
Persistent link: https://www.econbiz.de/10010973374
We relate the Lp-variation, 2≤p∞, of a solution of a backward stochastic differential equation with a path-dependent terminal condition to a generalized notion of fractional smoothness. This concept of fractional smoothness takes into account the quantitative propagation of singularities in...
Persistent link: https://www.econbiz.de/10011064893
For a stopped diffusion process in a multidimensional time-dependent domain , we propose and analyse a new procedure consisting in simulating the process with an Euler scheme with step size [Delta] and stopping it at discrete times in a modified domain, whose boundary has been appropriately...
Persistent link: https://www.econbiz.de/10008874782
We study the -time regularity of the Z-component of a Markovian BSDE, whose terminal condition is a function g of a forward SDE (Xt)0=t=T. When g is Lipschitz continuous, Zhang (2004) [18] proved that the related squared -time regularity is of order one with respect to the size of the time mesh....
Persistent link: https://www.econbiz.de/10008875016
We study the error induced by the time discretization of decoupled forward-backward stochastic differential equations (X,Y,Z). The forward component X is the solution of a Brownian stochastic differential equation and is approximated by a Euler scheme XN with N time steps. The backward component...
Persistent link: https://www.econbiz.de/10008875490
This short note corrects an error (a factor is missing) in two formulas related to L <Superscript>2</Superscript>-limits, established in “Discrete time hedging errors for options with irregular payoffs” by E. Gobet and E. Temam, Finance and Stochastics, 5, 357–367 (<CitationRef CitationID="CR6">2001</CitationRef>). Copyright Springer-Verlag Berlin Heidelberg...</citationref></superscript>
Persistent link: https://www.econbiz.de/10010997075