Showing 91 - 100 of 212
This paper proposes a flexible but parsimonious specification of the joint dynamics of market risk and return to produce forecasts of a time-varying market equity premium. Our parsimonious volatility model allows components to decay at different rates, generates mean-reverting forecasts, and...
Persistent link: https://www.econbiz.de/10014351609
This article proposes a flexible but parsimonious specification of the joint dynamics of market risk and return to produce forecasts of a time-varying market equity premium. Our parsimonious volatility model allows components to decay at different rates, generates mean-reverting forecasts, and...
Persistent link: https://www.econbiz.de/10014352438
This article uses a Markov-switching model that incorporates duration dependence to capture nonlinear structure in both the conditional mean and the conditional variance of stock returns. The model sorts returns into a high-return stable state and a low-return volatile state. We label these as...
Persistent link: https://www.econbiz.de/10014359341
We provide an approach to forecasting the long-run (unconditional) distribution of equity returns making optimal use of historical data in the presence of structural breaks. Our focus is on learning about breaks in real time and assessing their impact on out-of-sample density forecasts....
Persistent link: https://www.econbiz.de/10013113926
This paper extends the existing fully parametric Bayesian literature on stochastic volatility to allow for more general return distributions. Instead of specifying a particular distribution for the return innovation, we use nonparametric Bayesian methods to flexibly model the skewness and...
Persistent link: https://www.econbiz.de/10010292240
This paper proposes a Bayesian nonparametric modeling approach for the return distribution in multivariate GARCH models. In contrast to the parametric literature, the return distribution can display general forms of asymmetry and thick tails. An infinite mixture of multivariate normals is given...
Persistent link: https://www.econbiz.de/10010292242
In this paper, we extend the parametric, asymmetric, stochastic volatility model (ASV), where returns are correlated with volatility, by flexibly modeling the bivariate distribution of the return and volatility innovations nonparametrically. Its novelty is in modeling the joint, conditional,...
Persistent link: https://www.econbiz.de/10010292350
The relationship between risk and return is one of the most studied topics in finance. The majority of the literature is based on a linear, parametric relationship between expected returns and conditional volatility. This paper models the contemporaneous relationship between market excess...
Persistent link: https://www.econbiz.de/10010397700
The relationship between risk and return is one of the most studied topics in finance. The majority of the literature is based on a linear, parametric relationship between expected returns and conditional volatility. This paper models the contemporaneous relationship between market excess...
Persistent link: https://www.econbiz.de/10011082270
We extend the asymmetric, stochastic, volatility model by modeling the return-volatility distribution nonparametrically. The novelty is modeling this distribution with an infinite mixture of Normals, where the mixture unknowns have a Dirichlet process prior. Cumulative Bayes factors show our...
Persistent link: https://www.econbiz.de/10010730133