Showing 64,851 - 64,860 of 65,348
In observational studies, the non-parametric estimation of a binary treatment effect is often performed by matching each treated individual with a control unit which is similar in observed characteristics (covariates). In practical applications, the reservoir of covariates available may be...
Persistent link: https://www.econbiz.de/10010317922
This paper proposes a new class of HAC covariance matrix estimators. The standard HAC estimation method re-weights estimators of the autocovariances. Here we initially smooth the data observations themselves using kernel function based weights. The resultant HAC covariance matrix estimator is...
Persistent link: https://www.econbiz.de/10010318449
Instrumental variables are often associated with low estimator precision. This paper explores efficiency gains which might be achievable using moment conditions which are nonlinear in the disturbances and are based on flexible parametric families for error distributions. We show that these...
Persistent link: https://www.econbiz.de/10010318454
In this paper, the regression discontinuity design (RDD) is generalized to account for differences in observed covariates X in a fully nonparametric way. It is shown that the treatment effect can be estimated at the rate for one-dimensional nonparametric regression irrespective of the dimension...
Persistent link: https://www.econbiz.de/10010318461
This paper considers parametric estimation problems with independent, identically,non-regularly distributed data. It focuses on rate-effciency, in the sense of maximal possible convergence rates of stochastically bounded estimators, as an optimality criterion,largely unexplored in parametric...
Persistent link: https://www.econbiz.de/10010318471
I study inverse probability weighted M-estimation under a general missing data scheme. The cases covered that do not previously appear in the literature include M-estimation with missing data due to a censored survival time, propensity score estimation of the average treatment effect for linear...
Persistent link: https://www.econbiz.de/10010318477
Conditions are derived under which there is local nonparametric identification of values of structural functions and of their derivatives in potentially nonlinear nonseparable models. The attack on this problem is via conditional quantile functions and exploits local quantile independence...
Persistent link: https://www.econbiz.de/10010318485
This paper considers a linear triangular simultaneous equations model with conditional quantile restrictions. The paper adjusts for endogeneity by adopting a control function approach and presents a simple two-step estimator that exploits the partially linear structure of the model. The first...
Persistent link: https://www.econbiz.de/10010318486
For semi/nonparametric conditional moment models containing unknown parametric components θ and unknown functions of endogenous variables (h), Newey and Powell (2003) and Ai and Chen (2003) propose sieve minimum distance (SMD) estimation of (θ, h) and derive the large sample properties. This...
Persistent link: https://www.econbiz.de/10010318487
This paper is concerned with estimating the additive components of a nonparametric additive quantile regression model. We develop an estimator that is asymptotically normally distributed with a rate of convergence in probability of n-r/(2r+1) when the additive components are r-times continuously...
Persistent link: https://www.econbiz.de/10010318488