Showing 241 - 250 of 659
We develop inference procedures for policy analysis based on regression methods. We consider policy interventions that correspond to either changes in the distribution of covariates, or changes in the conditional distribution of the outcome given covariates, or both. Under either of these policy...
Persistent link: https://www.econbiz.de/10010288312
In this paper we introduce various set inference problems as they appear in finance and propose practical and powerful inferential tools. Our tools will be applicable to any problem where the set of interest solves a system of smooth estimable inequalities, though we will particularly focus on...
Persistent link: https://www.econbiz.de/10010288322
This article is about estimation and inference methods for high dimensional sparse (HDS) regression models in econometrics. High dimensional sparse models arise in situations where many regressors (or series terms) are available and the regression function is well-approximated by a parsimonious,...
Persistent link: https://www.econbiz.de/10010288323
We develop a practical and novel method for inference on intersection bounds, namely bounds defined by either the infimum or supremum of a parametric or nonparametric function, or equivalently, the value of a linear programming problem with a potentially infinite constraint set. Our approach is...
Persistent link: https://www.econbiz.de/10010288330
In this paper, we develop a new censored quantile instrumental variable (CQIV)estimator and describe its properties and computation. The CQIV estimator combines Powell(1986) censored quantile regression (CQR) to deal semiparametrically with censoring, with a control variable approach to...
Persistent link: https://www.econbiz.de/10010288346
In parametric models a sufficient condition for local identification is that the vector of moment conditions is differentiable at the true parameter with full rank derivative matrix. We show that there are corresponding sufficient conditions for nonparametric models. A nonparametric rank...
Persistent link: https://www.econbiz.de/10010288348
Quantile regression (QR) is a principal regression method for analyzing the impact of covariates on outcomes. The impact is described by the conditional quantile function and its functionals. In this paper we develop the nonparametric QR series framework, covering many regressors as a special...
Persistent link: https://www.econbiz.de/10010288361
In this paper we study post-penalized estimators which apply ordinary, unpenalized linear regression to the model selected by first-step penalized estimators, typically LASSO. It is well known that LASSO can estimate the regression function at nearly the oracle rate, and is thus hard to improve...
Persistent link: https://www.econbiz.de/10010288394
We consider median regression and, more generally, quantile regression in high-dimensional sparse models. In these models the overall number of regressors p is very large, possibly larger than the sample size n, but only s of these regressors have non-zero impact on the conditional quantile of...
Persistent link: https://www.econbiz.de/10010288402
In this paper we develop procedures for performing inference in regression models about how potential policy interventions affect the entire marginal distribution of an outcome of interest. These policy interventions consist of either changes in the distribution of covariates related to the...
Persistent link: https://www.econbiz.de/10010288406