Showing 301 - 310 of 659
This paper applies a regularization procedure called increasing rearrangement to monotonize Edgeworth and Cornish-Fisher expansions and any other related approximations of distribution and quantile functions of sample statistics. Besides satisfying the logical monotonicity, required of...
Persistent link: https://www.econbiz.de/10005727669
This paper considers flexible conditional (regression) measures of market risk. Value-at-Risk modeling is cast in terms of the quantile regression function - the inverse of the conditional distribution function. A basic specification analysis relates its functional forms to the benchmark models...
Persistent link: https://www.econbiz.de/10005612883
<p>Suppose that a target function is monotonic, namely, weakly increasing, and an original estimate of the target function is available, which is not weakly increasing. Many common estimation methods used in statistics produce such estimates. We show that these estimates can always be improved with...</p>
Persistent link: https://www.econbiz.de/10005547931
Persistent link: https://www.econbiz.de/10005827793
We study inference in structural models with a jump in the conditional density, where location and size of the jump are described by regression curves. Two prominent examples are auction models, where the bid density jumps from zero to a positive value at the lowest cost, and equilibrium...
Persistent link: https://www.econbiz.de/10005332625
<p><p><p><p><p>In this paper we study post-penalized estimators which apply ordinary, unpenalized linear regression to the model selected by first-step penalized estimators, typically LASSO. It is well known that LASSO can estimate the regression function at nearly the oracle rate, and is thus hard to improve...</p></p></p></p></p>
Persistent link: https://www.econbiz.de/10008539780
In this paper, we develop a new censored quantile instrumental variable (CQIV) estimator and describe its properties and computation. The CQIV estimator handles censoring semi-parametrically in the tradition of Powell (1986), and it generalizes standard censored quantile regression (CQR) methods...
Persistent link: https://www.econbiz.de/10008545852
Persistent link: https://www.econbiz.de/10008491501
Persistent link: https://www.econbiz.de/10008491507
Quantile regression (QR) fits a linear model for conditional quantiles just as ordinary least squares (OLS) fits a linear model for conditional means. An attractive feature of OLS is that it gives the minimum mean-squared error linear approximation to the conditional expectation function even...
Persistent link: https://www.econbiz.de/10005702363