Showing 401 - 410 of 659
We propose strategies to estimate and make inference on key features of heterogeneous effects in randomized experiments. These key features include best linear predictors of the effects using machine learning proxies, average effects sorted by impact groups, and average characteristics of most...
Persistent link: https://www.econbiz.de/10012916903
Quantile regression(QR) fits a linear model for conditional quantiles, just as ordinary least squares (OLS) fits a linear model for conditional means. An attractive feature of OLS is that it gives the minimum mean square error linear approximation to the conditional expectation function even...
Persistent link: https://www.econbiz.de/10013221315
This paper empirically examines how the opening of K-12 schools and colleges is associated with the spread of COVID-19 using county-level panel data in the United States. Using data on foot traffic and K-12 school opening plans, we analyze how an increase in visits to schools and opening schools...
Persistent link: https://www.econbiz.de/10013239567
The paper develops estimation and inference methods for econometric models with partial identification, focusing on models defined by moment inequalities and equalities. Main applications of this framework include analysis of game-theoretic models, regression with missing and mismeasured data,...
Persistent link: https://www.econbiz.de/10014026967
Under minimal assumptions finite sample confidence bands for quantile regression models can be constructed. These confidence bands are based on the "conditional pivotal property" of estimating equations that quantile regression methods aim to solve and will provide valid finite sample inference...
Persistent link: https://www.econbiz.de/10014027304
We propose a pivotal method for estimating high-dimensional sparse linear regression models, where the overall number of regressors p is large, possibly much larger than n, but only s regressors are significant. The method is a modification of the lasso, called the square-root lasso. The method...
Persistent link: https://www.econbiz.de/10013121472
In parametric models a sufficient condition for local identification is that the vector of moment conditions is differentiable at the true parameter with full rank derivative matrix. We show that additional conditions are often needed in nonlinear, nonparametric models to avoid nonlinearities...
Persistent link: https://www.econbiz.de/10013097986
In academic and policy circles, there has been considerable interest in the impact of “big data” on firm performance. We examine the question of how the amount of data impacts the accuracy of Machine Learned models of weekly retail product forecasts using a proprietary data set obtained from...
Persistent link: https://www.econbiz.de/10012927020
This paper develops linear estimators for structural and causal parameters in nonparametric,nonseparable models using panel data. These models incorporate unobserved, time-varying, individual heterogeneity, which may be correlated with the regressors. Estimation is based on an approximation of...
Persistent link: https://www.econbiz.de/10015194971
From its inception, demand estimation has faced the problem of "many prices." This paper provides estimators of average demand and associated bounds on exact consumer surplus when there are many prices in cross-section or panel data. For cross-section data we provide a debiased machine learner...
Persistent link: https://www.econbiz.de/10013324722