Showing 11 - 20 of 2,823
It is standard practice in applied work to rely on linear least squares regression to estimate the effect of a binary variable ("treatment") on some outcome of interest. In this paper I study the interpretation of the regression estimand when treatment effects are in fact heterogeneous. I show...
Persistent link: https://www.econbiz.de/10011401759
Average treatment effects estimands can present significant bias under the presence of outliers. Moreover, outliers can be particularly hard to detect, creating bias and inconsistency in the semi-parametric ATE estimads. In this paper, we use Monte Carlo simulations to demonstrate that...
Persistent link: https://www.econbiz.de/10011817589
Matching-type estimators using the propensity score are the major workhorse in active labour market policy evaluation. This work investigates if machine learning algorithms for estimating the propensity score lead to more credible estimation of average treatment effects on the treated using a...
Persistent link: https://www.econbiz.de/10012141163
Applied work often studies the effect of a binary variable (“treatment”) using linear models with additive effects. I study the interpretation of the OLS estimands in such models when treatment effects are heterogeneous. I show that the treatment coefficient is a convex combination of two...
Persistent link: https://www.econbiz.de/10012227671
Applied work often studies the effect of a binary variable ("treatment") using linear models with additive effects. I study the interpretation of the OLS estimands in such models when treatment effects are heterogeneous. I show that the treatment coefficient is a convex combination of two...
Persistent link: https://www.econbiz.de/10012269961
Matching-type estimators using the propensity score are the major workhorse in active labour market policy evaluation. This work investigates if machine learning algorithms for estimating the propensity score lead to more credible estimation of average treatment effects on the treated using a...
Persistent link: https://www.econbiz.de/10012290580
In a treatment effect model with unconfoundedness, treatment assignments are not only independent of potential outcomes given the covariates, but also given the propensity score alone. Despite this powerful dimension reduction property, adjusting for the propensity score is known to lead to an...
Persistent link: https://www.econbiz.de/10011494361
This paper investigates the finite sample performance of a comprehensive set of semi- and nonparametric estimators for treatment and policy evaluation. In contrast to previous simulation studies which mostly considered semiparametric approaches relying on parametric propensity score estimation,...
Persistent link: https://www.econbiz.de/10011125870
This paper investigates the finite sample performance of a comprehensive set of semi- and nonparametric estimators for treatment and policy evaluation. In contrast to previous simulation studies which mostly considered semiparametric approaches relying on parametric propensity score estimation,...
Persistent link: https://www.econbiz.de/10011184647
We propose inverse probability weighted estimators for the distribution functions of the potential outcomes under the unconfoundedness assumption and apply the inverse mapping to obtain the quantile functions. We show that these estimators converge weakly to zero mean Gaussian processes. A...
Persistent link: https://www.econbiz.de/10010730121