Showing 31 - 40 of 866
Locally explosive behavior is observed in many economic and financial time series when bubbles are formed. We introduce a time-varying parameter model that is capable of describing this behavior in time series data. Our proposed model can be used to predict the emergence, existence and burst of...
Persistent link: https://www.econbiz.de/10011932359
We introduce a nonlinear semi-parametric model that allows for the robust filtering of a common stochastic trend in a multivariate system of cointegrated time series. The observation-driven stochastic trend can be specified using flexible updating mechanisms. The model provides a general...
Persistent link: https://www.econbiz.de/10015130131
The identification of causal effects of marketing campaigns (advertisements, discounts, promotions, loyalty programs) require the collection of experimental data. Such data sets frequently suffer from limited sample sizes due to constraints (time, budget) which can result in imprecise estimators...
Persistent link: https://www.econbiz.de/10015165818
This discussion paper led to a publication in the <I>Electronic Journal of Statistics</I> (2014). Vol. 8, pages 1088-1112.<P> We characterize the dynamic properties of Generalized Autoregressive Score (GAS) processes by identifying regions of the parameter space that imply stationarity and ergodicity. We...</p></i>
Persistent link: https://www.econbiz.de/10011256295
The strong consistency and asymptotic normality of the maximum likelihood estimator in observation-driven models usually requires the study of the model both as a filter for the time-varying parameter and as a data generating process (DGP) for observed data. The probabilistic properties of the...
Persistent link: https://www.econbiz.de/10011272581
We investigate the information theoretic optimality properties of the score function of the predictive likelihood as a device to update parameters in observation driven time-varying parameter models. The results provide a new theoretical justification for the class of generalized autoregressive...
Persistent link: https://www.econbiz.de/10011272597
We argue that existing methods for the treatment of missing observations in observation-driven models lead to inconsistent inference. We provide a formal proof of this inconsistency for a Gaussian model with time-varying mean. A Monte Carlo simulation study supports this theoretical result and...
Persistent link: https://www.econbiz.de/10014116185
We develop a new targeted maximum likelihood estimation method that provides improved forecasting for misspecified linear autoregressive models. The method weighs data points in the observed sample and is useful in the presence of data generating processes featuring structural breaks, complex...
Persistent link: https://www.econbiz.de/10013250990
We propose a dynamic factor model which we use to analyze the relationship between education participation and national unemployment, as well as to forecast the number of students across the many different types of education. By clustering the factor loadings associated with the dynamic...
Persistent link: https://www.econbiz.de/10013250494
We first consider an extension of the generalized autoregressive conditional heteroskedasticity (GARCH) model that allows for a more flexible weighting of financial squared-returns for the filtering of volatility. The parameter for the squared-return in the GARCH model is time-varying with an...
Persistent link: https://www.econbiz.de/10012951597