Showing 1 - 10 of 275
Discrete random probability measures and the exchangeable random partitions they induce are key tools for addressing a variety of estimation and prediction problems in Bayesian inference. Indeed, many popular nonparametric priors, such as the Dirichlet and the Pitman–Yor process priors, select...
Persistent link: https://www.econbiz.de/10010842840
Species sampling problems have a long history in ecological and biological studies and a number of issues, including the evaluation of species richness, the design of sampling experiments, the estimation of rare species variety, are to be addressed. Such inferential problems have recently...
Persistent link: https://www.econbiz.de/10010587725
In Bayesian nonparametric inference, random discrete probability measures are commonly used as priors within hierarchical mixture models for density estimation and for inference on the clustering of the data. Recently it has been shown that they can also be exploited in species sampling...
Persistent link: https://www.econbiz.de/10009651024
Most of the Bayesian nonparametric models for non–exchangeable data that are used in applications are based on some extension to the multivariate setting of the Dirichlet process, the best known being MacEachern’s dependent Dirichlet process. A comparison of two recently introduced classes...
Persistent link: https://www.econbiz.de/10010667872
Persistent link: https://www.econbiz.de/10011036032
A Bayesian non-parametric methodology has been recently proposed to deal with the issue of prediction within species sampling problems. Such problems concern the evaluation, conditional on a sample of size "n", of the species variety featured by an additional sample of size "m". Genomic...
Persistent link: https://www.econbiz.de/10008479736
A Bayesian nonparametric methodology has been recently proposed in order to deal with the issue of prediction within species sampling problems. Such problems concern the evaluation, conditional on a sample of size n, of the species variety featured by an additional sample of size m. Genomic...
Persistent link: https://www.econbiz.de/10008518906
In Bayesian nonparametric inference, random discrete probability measures are commonly used as priors within hierarchical mixture models for density estimation and for inference on the clustering of the data. Recently it has been shown that they can also be exploited in species sampling...
Persistent link: https://www.econbiz.de/10010343850
Persistent link: https://www.econbiz.de/10011035964
Mixture models for hazard rate functions are widely used tools for addressing the statistical analysis of survival data subject to a censoring mechanism. The present paper introduces a new class of vectors of random hazard rate functions that are expressed as kernel mixtures of dependent...
Persistent link: https://www.econbiz.de/10011145336