Showing 1 - 10 of 4,541
This paper shows that Vector Autoregression with Bayesian shrinkage is an appropriate tool for large dynamic models. We build on the results by De Mol, Giannone, and Reichlin (2008) and show that, when the degree of shrinkage is set in relation to the cross-sectional dimension, the forecasting...
Persistent link: https://www.econbiz.de/10005530858
We define nowcasting as the prediction of the present, the very near future and the very recent past. Crucial in this process is to use timely monthly information in order to nowcast key economic variables, such as e.g. GDP, that are typically collected at low frequency and published with long...
Persistent link: https://www.econbiz.de/10008752568
The term now-casting is a contraction for now and forecasting and has been used for a long-time in meteorology and recently also in economics. In this paper we survey recent developments in economic now-casting with special focus on those models that formalize key features of how market...
Persistent link: https://www.econbiz.de/10011605609
The term now-casting is a contraction for now and forecasting and has been used for a long time in meteorology and recently also in economics. In this chapter we survey recent developments in economic now-casting with special focus on those models that formalize key features of how market...
Persistent link: https://www.econbiz.de/10014025545
Persistent link: https://www.econbiz.de/10009766339
Persistent link: https://www.econbiz.de/10009621906
Persistent link: https://www.econbiz.de/10011507018
In this paper we propose a methodology to estimate a dynamic factor model on data sets with an arbitrary pattern of missing data. We modify the Expectation Maximisation (EM) algorithm as proposed for a dynamic factor model by Watson and Engle (1983) to the case with general pattern of missing...
Persistent link: https://www.econbiz.de/10008459128
This paper describes an algorithm to compute the distribution of conditional forecasts, i.e. projections of a set of variables of interest on future paths of some other variables, in dynamic systems. The algorithm is based on Kalman filtering methods and is computationally viable for large...
Persistent link: https://www.econbiz.de/10011067215
This paper describes an algorithm to compute the distribution of conditional forecasts, i.e. projections of a set of variables of interest on future paths of some other variables, in dynamic systems. The algorithm is based on Kalman filtering methods and is computationally viable for large...
Persistent link: https://www.econbiz.de/10015301784