Showing 1 - 10 of 58
The objective of the paper is to present a novel methodology for likelihood-based inference for discretely observed diffusions. We propose Monte Carlo methods, which build on recent advances on the exact simulation of diffusions, for performing maximum likelihood and Bayesian estimation....
Persistent link: https://www.econbiz.de/10005140170
We introduce a novel particle filter scheme for a class of partially observed multivariate diffusions. We consider a variety of observation schemes, including diffusion observed with error, observation of a subset of the components of the multivariate diffusion and arrival times of a Poisson...
Persistent link: https://www.econbiz.de/10005193965
It is possible to implement importance sampling, and particle filter algorithms, where the importance sampling weight is random. Such random-weight algorithms have been shown to be efficient for inference for a class of diffusion models, as they enable inference without any (time discretization)...
Persistent link: https://www.econbiz.de/10008670646
Inference for Dirichlet process hierarchical models is typically performed using Markov chain Monte Carlo methods, which can be roughly categorized into marginal and conditional methods. The former integrate out analytically the infinite-dimensional component of the hierarchical model and sample...
Persistent link: https://www.econbiz.de/10009468947
We develop Markov chain Monte Carlo methodology for Bayesian inference for non-Gaussian Ornstein-Uhlenbeck stochastic volatility processes. The approach introduced involves expressing the unobserved stochastic volatility process in terms of a suitable marked Poisson process. We introduce two...
Persistent link: https://www.econbiz.de/10005203043
We consider estimation of scalar functions that determine the dynamics of diffusion processes. It has been recently shown that nonparametric maximum likelihood estimation is ill-posed in this context. We adopt a probabilistic approach to regularize the problem by the adoption of a prior...
Persistent link: https://www.econbiz.de/10010568066
Inference for Dirichlet process hierarchical models is typically performed using Markov chain Monte Carlo methods, which can be roughly categorized into marginal and conditional methods. The former integrate out analytically the infinite-dimensional component of the hierarchical model and sample...
Persistent link: https://www.econbiz.de/10005569380
Persistent link: https://www.econbiz.de/10012410755
We combine two important recent advancements of MCMC algorithms: first, methods utilizing the intrinsic manifold structure of the parameter space; then, algorithms effective for targets in infinite-dimensions with the critical property that their mixing time is robust to mesh refinement.
Persistent link: https://www.econbiz.de/10010776537
The need to calibrate increasingly complex statistical models requires a persistent effort for further advances on available, computationally intensive Monte-Carlo methods. We study here an advanced version of familiar Markov-chain Monte-Carlo (MCMC) algorithms that sample from target...
Persistent link: https://www.econbiz.de/10010745211