Showing 1 - 10 of 1,022
Multidimensional scaling aims at reconstructing dissimilarities between pairs of objects by distances in a low dimensional space. However, in some cases the dissimilarity itself is unknown, but the range of the dissimilarity is given. Such fuzzy data fall in the wider class of symbolic data...
Persistent link: https://www.econbiz.de/10005000465
Persistent link: https://www.econbiz.de/10005118092
Multidimensional scaling aims at reconstructing dissimilarities between pairs of objects by distances in a low dimensional space. However, in some cases the dissimilarity itself is not known, but the range, or a histogram of the dissimilarities is given. This type of data fall in the wider class...
Persistent link: https://www.econbiz.de/10010837856
Persistent link: https://www.econbiz.de/10002762363
Persistent link: https://www.econbiz.de/10003402188
__Abstract__ Traditional extensions of the binary support vector machine (SVM) to multiclass problems are either heuristics or require solving a large dual optimization problem. Here, a generalized multiclass SVM called GenSVM is proposed, which can be used for classification problems where the...
Persistent link: https://www.econbiz.de/10011185632
__Abstract__ A least-squares bilinear clustering framework for modelling three-way data, where each observation consists of an ordinary two-way matrix, is introduced. The method combines bilinear decompositions of the two-way matrices into overall means, row margins, column margins and...
Persistent link: https://www.econbiz.de/10011194246
This article proposes a modified method for the construction of diffusion indexes in macroeconomic forecasting using principal component regres- sion. The method aims to maximize the amount of variance of the origi- nal predictor variables retained by the diffusion indexes, by matching the data...
Persistent link: https://www.econbiz.de/10010731613
Multidimensional scaling is a statistical technique to visualize dissimilarity data. In multidimensional scaling, objects are represented as points in a usually two dimensional space, such that the distances between the points match the observed dissimilarities as closely as possible. Here, we...
Persistent link: https://www.econbiz.de/10010731657
We propose to estimate the parameters of the Market Share Attraction Model (Cooper & Nakanishi, 1988; Fok & Franses, 2004) in a novel way by using a non-parametric technique for function estimation called Support Vector Regressions (SVR) (Vapnik, 1995; Smola, 1996). Traditionally, the parameters of the...
Persistent link: https://www.econbiz.de/10010731743