Showing 1 - 10 of 1,013
In this paper, we propose a new model that combines the vector model and the ideal point model of unfolding. An algorithm is developed, called VIPSCAL, that minimizes the combined loss both for ordinal and interval transformations. As such, mixed representations including both vectors and ideal...
Persistent link: https://www.econbiz.de/10010731795
Persistent link: https://www.econbiz.de/10001902940
Persistent link: https://www.econbiz.de/10002627407
This article proposes a modified method for the construction of diffusion indexes in macroeconomic forecasting using principal component regres- sion. The method aims to maximize the amount of variance of the origi- nal predictor variables retained by the diffusion indexes, by matching the data...
Persistent link: https://www.econbiz.de/10010731613
Multidimensional scaling is a statistical technique to visualize dissimilarity data. In multidimensional scaling, objects are represented as points in a usually two dimensional space, such that the distances between the points match the observed dissimilarities as closely as possible. Here, we...
Persistent link: https://www.econbiz.de/10010731657
We propose to estimate the parameters of the Market Share Attraction Model (Cooper & Nakanishi, 1988; Fok & Franses, 2004) in a novel way by using a non-parametric technique for function estimation called Support Vector Regressions (SVR) (Vapnik, 1995; Smola, 1996). Traditionally, the parameters of the...
Persistent link: https://www.econbiz.de/10010731743
Marketing problems often involve inary classification of customers into ``buyers'' versus ``non-buyers'' or ``prefers brand A'' versus ``prefers brand B''. These cases require binary classification models such as logistic regression, linear, and quadratic discriminant analysis. A promising...
Persistent link: https://www.econbiz.de/10010731745
Distances in the well known fuzzy c-means algorithm of Bezdek (1973) are measured by the squared Euclidean distance. Other distances have been used as well in fuzzy clustering. For example, Jajuga (1991) proposed to use the L_1-distance and Bobrowski and Bezdek (1991) also used the...
Persistent link: https://www.econbiz.de/10010731751
For many least-squares decomposition models efficient algorithms are well known. A more difficult problem arises in decomposition models where each residual is weighted by a nonnegative value. A special case is principal components analysis with missing data. Kiers (1997) discusses an algorithm...
Persistent link: https://www.econbiz.de/10010731764
To minimize the primal support vector machine (SVM) problem, we propose to use iterative majorization. To do so, we propose to use it- erative majorization. To allow for nonlinearity of the predictors, we use (non)monotone spline transformations. An advantage over the usual ker- nel approach in...
Persistent link: https://www.econbiz.de/10010731825