Showing 1 - 10 of 45
A fully-automatic Bayesian visualization tool to identify periodic components of evenly sampled stationary time series, is presented. The given method applies the multiscale ideas of the SiZer-methodology to the log-spectral density of a given series. The idea is to detect significant peaks in...
Persistent link: https://www.econbiz.de/10005006012
The key operation in Bayesian inference is to compute high-dimensional integrals. An old approximate technique is the Laplace method or approximation, which dates back to Pierre-Simon Laplace (1774). This simple idea approximates the integrand with a second-order Taylor expansion around the mode...
Persistent link: https://www.econbiz.de/10014122359
The presented method called Significant Non-stationarities, represents an exploratory tool for identifying significant changes in the mean, the variance, and the first-lag autocorrelation coefficient of a time series. The changes are detected on different time scales. The statistical inference...
Persistent link: https://www.econbiz.de/10005195778
Space-varying regression models are generalizations of standard linear models where the regression coefficients are allowed to change in space. The spatial structure is specified by a multivariate extension of pairwise difference priors thus enabling incorporation of neighboring structures and...
Persistent link: https://www.econbiz.de/10012234115
The INLA approach for approximate Bayesian inference for latent Gaussian models has been shown to give fast and accurate estimates of posterior marginals and also to be a valuable tool in practice via the R-package R-INLA. New developments in the R-INLA are formalized and it is shown how these...
Persistent link: https://www.econbiz.de/10011056405
The challenges of estimating hierarchical spatial models to large datasets are addressed. With the increasing availability of geocoded scientific data, hierarchical models involving spatial processes have become a popular method for carrying out spatial inference. Such models are customarily...
Persistent link: https://www.econbiz.de/10011056416
Inference in state-space models usually relies on recursive forms for filtering and smoothing of the state vectors regarding the temporal structure of the observations, an assumption that is, from our view point, unnecessary if the dataset is fixed, that is, completely available before analysis....
Persistent link: https://www.econbiz.de/10011056527
Persistent link: https://www.econbiz.de/10011033961
Persistent link: https://www.econbiz.de/10011036000
Persistent link: https://www.econbiz.de/10011036065